CSCE 689: Special Topics in Modern Algorithms for Data Science

Lecture 31

Samson Zhou

Presentation Schedule

- November 27: Chunkai, Jung, Galaxy AI
- November 29: STMI, Anmol, Jason
- December 1: Bokun, Ayesha, Dawei, Lipai

Last Time: Linear Regression

- Find the vector x that minimizes $\|A x-b\|_{2}$
- "Least squares" optimization

Last Time: Linear Regression

- We have $\arg \min _{x \in \mathbb{R}^{d}}\|A x-b\|_{2}=\arg \min _{x \in \mathbb{R}^{d}}\|A x-b\|_{2}^{2}$
- $\|A x-b\|_{2}^{2}=\left\|A x-b^{\perp}-b^{\|}\right\|_{2}^{2}$

$$
\begin{aligned}
& =\left\|A x-b^{\|}\right\|_{2}^{2}-2\left\langle A x-b^{\|}, b^{\perp}\right\rangle+\left\|b^{\perp}\right\|_{2}^{2} \\
& =\left\|A x-b^{\|}\right\|_{2}^{2}+\left\|b^{\perp}\right\|_{2}^{2}
\end{aligned}
$$

- Minimized for $\left\|A x-b^{\|}\right\|_{2}^{2}=0$ when $x=A^{\dagger} b^{\|}=A^{\dagger} b$

Last Time: Linear Regression

- Find the vector x that minimizes $\|A x-b\|_{2}$
- "Least squares" optimization
- MLE under Gaussian noise
- Closed form solution: $x=A^{\dagger} b$

Previously: Coreset Construction and Sampling

- Importance sampling only needs X^{\prime} to have size $O\left(\frac{1}{\varepsilon^{2}}\right)$ to achieve $(1+\varepsilon)$-approximation to $\operatorname{Cost}(X, C)$
- To handle all possible sets of k centers:
- Need to sample each point x with probability $\max _{C} \frac{\operatorname{Cost}(x, C)}{\operatorname{Cost}(X, C)}$ instead of $\frac{\operatorname{Cost}(x, C)}{\operatorname{Cost}(X, C)}$
- Need to union bound over a net of all possible sets of k centers

$$
\varlimsup_{\text {Net with size }\left(\frac{n \Delta}{\varepsilon}\right)^{O(k d)}}
$$

Previously: Sensitivity Sampling

- The quantity $s(x)=\max _{C} \frac{\operatorname{Cost}(x, C)}{\operatorname{Cost}(X, C)}$ is called the sensitivity of x and intuitively measures how "important" the point x is
- The total sensitivity of X is $\sum_{x \in X} S(x)$ and quantifies how many points will be sampled into X^{\prime} through importance/sensitivity sampling (before the union bound)

Previously: Sensitivity Sampling

- Recall: $\frac{k d}{\varepsilon^{2}} \cdot \log \frac{n \Delta}{\varepsilon} \cdot \sum_{x \in X} S(x)$ points sampled
- $\sum_{x \in X} S(x)=O_{Z}(k)$
- In total, roughly $\frac{k^{2} d}{\varepsilon^{2}} \cdot \log \frac{n \Delta}{\varepsilon}$ points sampled in expectation

Linear Algebra Review

Subspace Embedding

- Subspace embedding: Given $\varepsilon>0$ and $A \in$ $R^{n \times d}$, find matrix $M \in R^{m \times d}$ with $m \ll n$, such that for every $x \in \mathbb{R}^{d}$,

$$
(1-\varepsilon)\|A x\|_{2} \leq\|M x\|_{2} \leq(1+\varepsilon)\|A x\|_{2}
$$

- Equivalent to $(1-\varepsilon) A^{\top} A \preccurlyeq M^{\top} M \preccurlyeq$ $(1+\varepsilon) A^{\top} A$
- Approximates all cuts of a graph when $A^{\top} A$ is graph Laplacian

Subspace Embedding

- Subspace embedding: Given $\varepsilon>0$ and $A \in$ $R^{n \times d}$, find matrix $M \in R^{m \times d}$ with $m \ll n$, such that for every $x \in \mathbb{R}^{d}$,

$$
(1-\varepsilon)\|A x\|_{2} \leq\|M x\|_{2} \leq(1+\varepsilon)\|A x\|_{2}
$$

- Claim: A construction of a subspace embedding can be used to approximately solve linear regression

Regression and Subspace Embeddings

- Recall: Goal is to find x that minimizes $\|A x-b\|_{2}$
n

Regression and Subspace Embeddings

- Recall: Goal is to find x that minimizes $\|A x-b\|_{2}$

Regression and Subspace Embeddings

- Recall: Goal is to find x that minimizes $\|A x-b\|_{2}$

Previously: Coreset Construction and Sampling

- Importance sampling only needs X^{\prime} to have size $O\left(\frac{1}{\varepsilon^{2}}\right)$ to achieve $(1+\varepsilon)$-approximation to $\operatorname{Cost}(X, C)$
- To handle all possible sets of k centers:
- Need to sample each point x with probability $\max _{C} \frac{\operatorname{Cost}(x, C)}{\operatorname{Cost}(X, C)}$ instead of $\frac{\operatorname{Cost}(x, C)}{\operatorname{Cost}(X, C)}$
- Need to union bound over a net of all possible sets of k centers

$$
\varlimsup_{\text {Net with size }\left(\frac{n \Delta}{\varepsilon}\right)^{O(k d)}}
$$

Previously: Sensitivity Sampling

- The quantity $s(x)=\max _{C} \frac{\operatorname{Cost}(x, C)}{\operatorname{Cost}(X, C)}$ is called the sensitivity of x and intuitively measures how "important" the point x is
- The total sensitivity of X is $\sum_{x \in X} S(x)$ and quantifies how many points will be sampled into X^{\prime} through importance/sensitivity sampling (before the union bound)

Previously: Sensitivity Sampling

- Recall: $\frac{k d}{\varepsilon^{2}} \cdot \log \frac{n \Delta}{\varepsilon} \cdot \sum_{x \in X} S(x)$ points sampled
- $\sum_{x \in X} S(x)=O_{Z}(k)$
- In total, roughly $\frac{k^{2} d}{\varepsilon^{2}} \cdot \log \frac{n \Delta}{\varepsilon}$ points sampled in expectation

Subspace Embedding

- Subspace embedding: Given $\varepsilon>0$ and $A \in$ $\mathbb{R}^{n \times d}$, find matrix $M \in \mathbb{R}^{m \times d}$ with $m \ll n$, such that for every $x \in \mathbb{R}^{d}$,

$$
(1-\varepsilon)\|A x\|_{2} \leq\|M x\|_{2} \leq(1+\varepsilon)\|A x\|_{2}
$$

Subspace Embedding

- Subspace embedding: Given $\varepsilon>0$ and $A \in$ $\mathbb{R}^{n \times d}$, find matrix $M \in \mathbb{R}^{m \times d}$ with $m \ll n$, such that for every $x \in \mathbb{R}^{d}$,

$$
(1-\varepsilon)\|A x\|_{2}^{2} \leq\|M x\|_{2}^{2} \leq(1+\varepsilon)\|A x\|_{2}^{2}
$$

- Recall: $\|A x\|_{2}^{2}=\left\langle a_{1}, x\right\rangle^{2}+\cdots+\left\langle a_{n}, x\right\rangle^{2}$

Subspace Embedding

- Subspace embedding: Given $\varepsilon>0$ and $A \in \mathbb{R}^{n \times d}$, find matrix $M \in \mathbb{R}^{m \times d}$ with $m \ll n$, such that for every $x \in \mathbb{R}^{d}$,

$$
(1-\varepsilon)\|A x\|_{2}^{2} \leq\|M x\|_{2}^{2} \leq(1+\varepsilon)\|A x\|_{2}^{2}
$$

- Question: For a fixed $x \in \mathbb{R}^{d}$, how would we produce a matrix M such that $\|M x\|_{2}^{2} \approx\|A x\|_{2}^{2}$?

Subspace Embedding

- Question: For a fixed $x \in \mathbb{R}^{d}$, how would we produce a matrix M such that $\|M x\|_{2}^{2} \approx\|A x\|_{2}^{2}$?
- Recall that $\|A x\|_{2}^{2}=\left\langle a_{1}, x\right\rangle^{2}+\cdots+\left\langle a_{n}, x\right\rangle^{2}$
- Hint \#1: What if M is a weighted subset of rows of A, i.e., a coreset?

Subspace Embedding

- Question: For a fixed $x \in \mathbb{R}^{d}$, how would we produce a matrix M such that $\|M x\|_{2}^{2} \approx\|A x\|_{2}^{2}$?
- Recall that $\|A x\|_{2}^{2}=\left\langle a_{1}, x\right\rangle^{2}+\cdots+\left\langle a_{n}, x\right\rangle^{2}$
- Hint \#2: What if $\left\langle a_{1}, x\right\rangle^{2}=\cdots=\left\langle a_{n}, x\right\rangle^{2}$?

Bernstein's Inequality

- Bernstein's inequality: Let $y_{1}, \ldots, y_{n} \in[-M, M]$ be independent random variables and let $y=y_{1}+\cdots+y_{n}$ have mean μ and variance σ^{2}. Then for any $t \geq 0$:

$$
\operatorname{Pr}[|y-\mu| \geq t] \leq 2 e^{-\overline{2 \sigma^{2}+\frac{4}{3} M t}}
$$

Coreset Construction and Uniform Sampling

- Consider a fixed $x \in \mathbb{R}^{d}$, which induces "cost" $\|A x\|_{2}^{2}$
- Suppose all rows have the same cost, $\left\langle a_{1}, x\right\rangle^{2}=\cdots=$ $\left\langle a_{n}, x\right\rangle^{2}$
- Can get a 2-approximation to $\|A x\|_{2}^{2}$ even for $p=\Theta\left(\frac{1}{n}\right)$
- How many samples do we expect? $n p=\Theta(1)$

Coreset Construction and Uniform Sampling

- Consider a fixed $x \in \mathbb{R}^{d}$, which induces "cost" $\|A x\|_{2}^{2}$
- Suppose all rows have cost between 1 and n
- Suppose $p_{i}=p$ for all $i \in[n]$
- How many rows do I need to sample to approximate $\|A x\|_{2}^{2}$ within a $(1+\varepsilon)$-factor?

Uniform Sampling for Subspace Embedding

- Consider a fixed $x \in \mathbb{R}^{d}$, which induces "cost" $\|A x\|_{2}^{2}$
- Suppose all rows have cost between 1 and n
- Suppose $p_{i}=p$ for all $i \in[n]$
- For Bernstein's inequality, we require $\frac{2 n^{2}}{p} \approx\left(\frac{\|A x\|_{2}^{2}}{2}\right)^{2}$ and $\|A x\|_{2}^{2}$ can be as small as n, so we need $p \approx 1$

Coreset Construction and Sampling

- Importance sampling only needs M to have $O\left(\frac{1}{\varepsilon^{2}}\right)$ rows to achieve $(1+\varepsilon)$-approximation to $\|A x\|_{2}^{2}$
- To handle all possible sets of k centers:
- Need to sample each row a_{i} with probability $\max _{x \in \mathbb{R}^{d}} \frac{\left\langle a_{1}, x\right\rangle^{2}}{\|A x\|_{2}^{2}}$ instead of $\frac{\left\langle a_{1}, x\right\rangle^{2}}{\|A x\|_{2}^{2}}$
- Need to union bound over a net of all choices of $x \in \mathbb{R}^{d}$

Leverage Scores

- Intuition: how unique a row is (recall importance sampling)
- $\ell_{i}=\max _{x \in \mathbb{R}^{d}} \frac{\left\langle a_{1}, x\right\rangle^{2}}{\|A x\|_{2}^{2}}$ are the leverage scores of A (in this case of row a_{i})

- Take $x=(1-1)$ to see that $\ell_{1}=1$
- Take $x=\left(\begin{array}{ll}0 & 1\end{array}\right)$ to see that $\ell_{2}=1$
- $\ell_{i}=a_{i}\left(A^{\top} A\right)^{-1} a_{i}^{\top}, \quad \sum \ell_{i}=d$

