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Presentation Schedule

• November 27: Chunkai, Jung, Galaxy AI

• November 29: STMI, Anmol, Jason

• December 1: Bokun, Ayesha, Dawei, Lipai



Last Time: Linear Regression

• Find the vector 𝑥 that 
minimizes 𝐴𝑥 − 𝑏 2

• “Least squares” optimization
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Last Time: Linear Regression

• We have arg min
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Last Time: Linear Regression
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• Find the vector 𝑥 that minimizes 𝐴𝑥 − 𝑏 2

• “Least squares” optimization

• MLE under Gaussian noise

• Closed form solution: 𝑥 = 𝐴†𝑏



Previously: Coreset Construction and 
Sampling

• Importance sampling only needs 𝑋′ to have size 𝑂
1

𝜀2  to 

achieve 1 + 𝜀 -approximation to Cost(𝑋, 𝐶)

• To handle all possible sets of 𝑘 centers:
• Need to sample each point 𝑥 with probability 

max
𝐶

Cost 𝑥,𝐶

Cost 𝑋,𝐶
 instead of 

Cost 𝑥,𝐶

Cost 𝑋,𝐶

• Need to union bound over a net of all possible sets of 𝑘 
centers

Net with size
𝑛Δ

𝜀

𝑂(𝑘𝑑)



Previously: Sensitivity Sampling

• The quantity 𝑠 𝑥 = max
𝐶

Cost 𝑥,𝐶

Cost 𝑋,𝐶
 is called the sensitivity of 

𝑥 and intuitively measures how “important” the point 𝑥 is

• The total sensitivity of 𝑋 is σ𝑥∈𝑋 𝑠(𝑥) and quantifies how 
many points will be sampled into 𝑋′ through 
importance/sensitivity sampling (before the union bound)



Previously: Sensitivity Sampling

• Recall:
𝑘𝑑

𝜀2 ⋅ log
𝑛Δ

𝜀
⋅ σ𝑥∈𝑋 𝑠(𝑥) points sampled

• σ𝑥∈𝑋 𝑠(𝑥) = 𝑂𝑧(𝑘)

• In total, roughly 
𝑘2𝑑

𝜀2 ⋅ log
𝑛Δ

𝜀
 points sampled in expectation



Linear Algebra Review

• For 𝑦 = 𝐴𝑥, we have 𝑦𝑖 = ⟨𝑎𝑖 , 𝑥⟩

• 𝐴𝑥 2
2 = 𝑎1, 𝑥 2 + ⋯ + 𝑎𝑛, 𝑥 2
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Subspace Embedding

1 − 𝜀 𝐴𝑥 2 ≤ 𝑀𝑥 2 ≤ 1 + 𝜀 𝐴𝑥 2

• Subspace embedding: Given 𝜀 > 0 and 𝐴 ∈
𝑅𝑛×𝑑, find matrix 𝑀 ∈ 𝑅𝑚×𝑑  with 𝑚 ≪ 𝑛, such 
that for every 𝑥 ∈ ℝ𝑑,

• Equivalent to 1 − 𝜀 𝐴⊤𝐴 ≼ 𝑀⊤𝑀 ≼
1 + 𝜀 𝐴⊤𝐴

• Approximates all cuts of a graph when 𝐴⊤𝐴 is 
graph Laplacian
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Subspace Embedding

1 − 𝜀 𝐴𝑥 2 ≤ 𝑀𝑥 2 ≤ 1 + 𝜀 𝐴𝑥 2

• Subspace embedding: Given 𝜀 > 0 and 𝐴 ∈
𝑅𝑛×𝑑, find matrix 𝑀 ∈ 𝑅𝑚×𝑑  with 𝑚 ≪ 𝑛, such 
that for every 𝑥 ∈ ℝ𝑑,

• Claim: A construction of a subspace embedding 
can be used to approximately solve linear 
regression
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Regression and Subspace Embeddings

• Recall: Goal is to find 𝑥 that minimizes 𝐴𝑥 − 𝑏 2
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Regression and Subspace Embeddings

• Recall: Goal is to find 𝑥 that minimizes 𝐴𝑥 − 𝑏 2
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Regression and Subspace Embeddings

• Recall: Goal is to find 𝑥 that minimizes 𝐴𝑥 − 𝑏 2
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𝐵𝑦 2 ≈ 𝐴𝑥 − 𝑏 2



Previously: Coreset Construction and 
Sampling

• Importance sampling only needs 𝑋′ to have size 𝑂
1

𝜀2  to 

achieve 1 + 𝜀 -approximation to Cost(𝑋, 𝐶)

• To handle all possible sets of 𝑘 centers:
• Need to sample each point 𝑥 with probability 

max
𝐶

Cost 𝑥,𝐶

Cost 𝑋,𝐶
 instead of 

Cost 𝑥,𝐶

Cost 𝑋,𝐶

• Need to union bound over a net of all possible sets of 𝑘 
centers

Net with size
𝑛Δ

𝜀

𝑂(𝑘𝑑)



Previously: Sensitivity Sampling

• The quantity 𝑠 𝑥 = max
𝐶

Cost 𝑥,𝐶

Cost 𝑋,𝐶
 is called the sensitivity of 

𝑥 and intuitively measures how “important” the point 𝑥 is

• The total sensitivity of 𝑋 is σ𝑥∈𝑋 𝑠(𝑥) and quantifies how 
many points will be sampled into 𝑋′ through 
importance/sensitivity sampling (before the union bound)



Previously: Sensitivity Sampling

• Recall:
𝑘𝑑

𝜀2 ⋅ log
𝑛Δ

𝜀
⋅ σ𝑥∈𝑋 𝑠(𝑥) points sampled

• σ𝑥∈𝑋 𝑠(𝑥) = 𝑂𝑧(𝑘)

• In total, roughly 
𝑘2𝑑

𝜀2 ⋅ log
𝑛Δ

𝜀
 points sampled in expectation



Subspace Embedding

1 − 𝜀 𝐴𝑥 2 ≤ 𝑀𝑥 2 ≤ 1 + 𝜀 𝐴𝑥 2

• Subspace embedding: Given 𝜀 > 0 and 𝐴 ∈
ℝ𝑛×𝑑, find matrix 𝑀 ∈ ℝ𝑚×𝑑 with 𝑚 ≪ 𝑛, such 
that for every 𝑥 ∈ ℝ𝑑,
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Subspace Embedding

1 − 𝜀 𝐴𝑥 2
2 ≤ 𝑀𝑥 2

2 ≤ 1 + 𝜀 𝐴𝑥 2
2

• Subspace embedding: Given 𝜀 > 0 and 𝐴 ∈
ℝ𝑛×𝑑, find matrix 𝑀 ∈ ℝ𝑚×𝑑 with 𝑚 ≪ 𝑛, such 
that for every 𝑥 ∈ ℝ𝑑,

• Recall: 𝐴𝑥 2
2 = 𝑎1, 𝑥 2 + ⋯ + 𝑎𝑛, 𝑥 2
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Subspace Embedding

• Subspace embedding: Given 𝜀 > 0 and 𝐴 ∈ ℝ𝑛×𝑑, find 
matrix 𝑀 ∈ ℝ𝑚×𝑑 with 𝑚 ≪ 𝑛, such that for every 𝑥 ∈ ℝ𝑑,

• Question: For a fixed 𝑥 ∈ ℝ𝑑, how would we produce a 
matrix 𝑀 such that 𝑀𝑥 2

2 ≈ 𝐴𝑥 2
2?

1 − 𝜀 𝐴𝑥 2
2 ≤ 𝑀𝑥 2

2 ≤ 1 + 𝜀 𝐴𝑥 2
2



Subspace Embedding

• Question: For a fixed 𝑥 ∈ ℝ𝑑, how would we produce a 
matrix 𝑀 such that 𝑀𝑥 2

2 ≈ 𝐴𝑥 2
2?

• Recall that 𝐴𝑥 2
2 = 𝑎1, 𝑥 2 + ⋯ + 𝑎𝑛, 𝑥 2

• Hint #1: What if 𝑀 is a weighted subset of rows of 𝐴, i.e., a 
coreset?



Subspace Embedding

• Question: For a fixed 𝑥 ∈ ℝ𝑑, how would we produce a 
matrix 𝑀 such that 𝑀𝑥 2

2 ≈ 𝐴𝑥 2
2?

• Recall that 𝐴𝑥 2
2 = 𝑎1, 𝑥 2 + ⋯ + 𝑎𝑛, 𝑥 2

• Hint #2: What if 𝑎1, 𝑥 2 = ⋯ = 𝑎𝑛, 𝑥 2?



Bernstein’s Inequality

• Bernstein’s inequality: Let 𝑦1, … , 𝑦𝑛 ∈ [−𝑀, 𝑀] be 
independent random variables and let 𝑦 = 𝑦1 + ⋯ + 𝑦𝑛 
have mean 𝜇 and variance 𝜎2. Then for any 𝑡 ≥ 0:

Pr 𝑦 − 𝜇 ≥ 𝑡 ≤ 2𝑒
−

𝑡2

2𝜎2+
4
3

𝑀𝑡



Coreset Construction and Uniform Sampling

• Consider a fixed 𝑥 ∈ ℝ𝑑, which induces “cost” 𝐴𝑥 2
2

• Suppose all rows have the same cost, 𝑎1, 𝑥 2 = ⋯ =
𝑎𝑛, 𝑥 2

• Can get a 2-approximation to 𝐴𝑥 2
2 even for 𝑝 = Θ

1

𝑛

• How many samples do we expect? 𝑛𝑝 = Θ 1



Coreset Construction and Uniform Sampling

• Consider a fixed 𝑥 ∈ ℝ𝑑, which induces “cost” 𝐴𝑥 2
2

• Suppose all rows have cost between 1 and 𝑛

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• How many rows do I need to sample to approximate 
𝐴𝑥 2

2 within a 1 + 𝜀 -factor?



Uniform Sampling for Subspace Embedding

• Consider a fixed 𝑥 ∈ ℝ𝑑, which induces “cost” 𝐴𝑥 2
2

• Suppose all rows have cost between 1 and 𝑛

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• For Bernstein’s inequality, we require 
2𝑛2

𝑝
≈

𝐴𝑥 2
2

2

2

 and 

𝐴𝑥 2
2 can be as small as 𝑛, so we need 𝑝 ≈ 1



Coreset Construction and Sampling

• Importance sampling only needs 𝑀 to have 𝑂
1

𝜀2  rows to 

achieve 1 + 𝜀 -approximation to 𝐴𝑥 2
2

• To handle all possible sets of 𝑘 centers:

• Need to sample each row 𝑎𝑖 with probability max
𝑥∈ℝ𝑑

𝑎1,𝑥 2

𝐴𝑥 2
2  

instead of 
𝑎1,𝑥 2

𝐴𝑥 2
2

• Need to union bound over a net of all choices of 𝑥 ∈ ℝ𝑑



Leverage Scores

• Intuition: how unique a row is (recall importance sampling)

•  ℓ𝑖 = max
𝑥∈ℝ𝑑

𝑎1,𝑥 2

𝐴𝑥 2
2  are the leverage scores of 𝐴 (in this case of row 𝑎𝑖 )

1  0

1  1

•  Take 𝑥 = (1 − 1) to see that ℓ1 = 1

•  Take 𝑥 = (0 1) to see that ℓ2 = 1

•  ℓ𝑖 = 𝑎𝑖 𝐴⊤𝐴 −1𝑎𝑖
⊤,  σℓ𝑖 = 𝑑 𝐴

𝑎𝑖
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