CSCE 689: Special Topics in Modern Algorithms for Data Science

Lecture 31

Samson Zhou

Presentation Schedule

- November 27: Chunkai, Jung, Galaxy Al
- November 29: STMI, Anmol, Jason
- December 1: Bokun, Ayesha, Dawei, Lipai

Last Time: Linear Regression

- Find the vector x that minimizes $||Ax b||_2$
- "Least squares" optimization

Last Time: Linear Regression

• We have $\arg\min_{x\in\mathbb{R}^d} ||Ax - b||_2 = \arg\min_{x\in\mathbb{R}^d} ||Ax - b||_2^2$

•
$$||Ax - b||_2^2 = ||Ax - b^{\perp} - b^{\parallel}||_2^2$$

= $||Ax - b^{\parallel}||_2^2 - 2\langle Ax - b^{\parallel}, b^{\perp} \rangle + ||b^{\perp}||_2^2$
= $||Ax - b^{\parallel}||_2^2 + ||b^{\perp}||_2^2$

• Minimized for $||Ax - b^{\parallel}||_2^2 = 0$ when $x = A^{\dagger}b^{\parallel} = A^{\dagger}b$

Last Time: Linear Regression

- Find the vector x that minimizes $||Ax b||_2$
- "Least squares" optimization
- MLE under Gaussian noise
- Closed form solution: $x = A^{\dagger}b$

Previously: Coreset Construction and Sampling

- Importance sampling only needs X' to have size $O\left(\frac{1}{\epsilon^2}\right)$ to achieve $(1 + \epsilon)$ -approximation to Cost(X, C)
- To handle all possible sets of *k* centers:
 - Need to sample each point x with probability $\max_{C} \frac{\operatorname{Cost}(x,C)}{\operatorname{Cost}(X,C)} \text{ instead of } \frac{\operatorname{Cost}(x,C)}{\operatorname{Cost}(X,C)}$
 - Need to union bound over a net of all possible sets of k centers

Net with size
$$\left(\frac{n\Delta}{\varepsilon}\right)^{O(kd)}$$

Previously: Sensitivity Sampling

• The quantity $s(x) = \max_{C} \frac{Cost(x,C)}{Cost(X,C)}$ is called the *sensitivity* of *x* and intuitively measures how "important" the point *x* is

• The *total sensitivity* of X is $\sum_{x \in X} s(x)$ and quantifies how many points will be sampled into X' through importance/sensitivity sampling (before the union bound)

Previously: Sensitivity Sampling

- Recall: $\frac{kd}{\epsilon^2} \cdot \log \frac{n\Delta}{\epsilon} \cdot \sum_{x \in X} s(x)$ points sampled
- $\sum_{x \in X} s(x) = O_z(k)$
- In total, roughly $\frac{k^2 d}{\epsilon^2} \cdot \log \frac{n\Delta}{\epsilon}$ points sampled in expectation

Linear Algebra Review

d

• For
$$y = Ax$$
, we have $y_i = \langle a_i, x \rangle$
• $||Ax||_2^2 = \langle a_1, x \rangle^2 + \dots + \langle a_n, x \rangle^2$

• Subspace embedding: Given $\varepsilon > 0$ and $A \in \mathbb{R}^{n \times d}$, find matrix $M \in \mathbb{R}^{m \times d}$ with $m \ll n$, such that for every $x \in \mathbb{R}^d$,

 $(1 - \varepsilon) \|Ax\|_2 \le \|Mx\|_2 \le (1 + \varepsilon) \|Ax\|_2$

- Equivalent to $(1 \varepsilon)A^{\top}A \leq M^{\top}M \leq (1 + \varepsilon)A^{\top}A$
- Approximates *all* cuts of a graph when $A^{T}A$ is graph Laplacian

• Subspace embedding: Given $\varepsilon > 0$ and $A \in \mathbb{R}^{n \times d}$, find matrix $M \in \mathbb{R}^{m \times d}$ with $m \ll n$, such that for every $x \in \mathbb{R}^d$,

 $(1 - \varepsilon) \|Ax\|_2 \le \|Mx\|_2 \le (1 + \varepsilon) \|Ax\|_2$

• Claim: A construction of a subspace embedding can be used to approximately solve linear regression

Regression and Subspace Embeddings

• Recall: Goal is to find x that minimizes $||Ax - b||_2$

Regression and Subspace Embeddings

• Recall: Goal is to find x that minimizes $||Ax - b||_2$

Regression and Subspace Embeddings

• Recall: Goal is to find x that minimizes $||Ax - b||_2$

Previously: Coreset Construction and Sampling

- Importance sampling only needs X' to have size $O\left(\frac{1}{\epsilon^2}\right)$ to achieve $(1 + \epsilon)$ -approximation to Cost(X, C)
- To handle all possible sets of *k* centers:
 - Need to sample each point x with probability $\max_{C} \frac{\operatorname{Cost}(x,C)}{\operatorname{Cost}(X,C)} \text{ instead of } \frac{\operatorname{Cost}(x,C)}{\operatorname{Cost}(X,C)}$
 - Need to union bound over a net of all possible sets of k centers

Net with size
$$\left(\frac{n\Delta}{\varepsilon}\right)^{O(kd)}$$

Previously: Sensitivity Sampling

• The quantity $s(x) = \max_{C} \frac{Cost(x,C)}{Cost(X,C)}$ is called the *sensitivity* of *x* and intuitively measures how "important" the point *x* is

• The *total sensitivity* of X is $\sum_{x \in X} s(x)$ and quantifies how many points will be sampled into X' through importance/sensitivity sampling (before the union bound)

Previously: Sensitivity Sampling

- Recall: $\frac{kd}{\epsilon^2} \cdot \log \frac{n\Delta}{\epsilon} \cdot \sum_{x \in X} s(x)$ points sampled
- $\sum_{x \in X} s(x) = O_z(k)$
- In total, roughly $\frac{k^2 d}{\epsilon^2} \cdot \log \frac{n\Delta}{\epsilon}$ points sampled in expectation

• Subspace embedding: Given $\varepsilon > 0$ and $A \in \mathbb{R}^{n \times d}$, find matrix $M \in \mathbb{R}^{m \times d}$ with $m \ll n$, such that for every $x \in \mathbb{R}^d$,

 $(1 - \varepsilon) \|Ax\|_2 \le \|Mx\|_2 \le (1 + \varepsilon) \|Ax\|_2$

• Subspace embedding: Given $\varepsilon > 0$ and $A \in \mathbb{R}^{n \times d}$, find matrix $M \in \mathbb{R}^{m \times d}$ with $m \ll n$, such that for every $x \in \mathbb{R}^d$,

 $(1 - \varepsilon) \|Ax\|_2^2 \le \|Mx\|_2^2 \le (1 + \varepsilon) \|Ax\|_2^2$

• Recall: $||Ax||_2^2 = \langle a_1, x \rangle^2 + \dots + \langle a_n, x \rangle^2$

• Subspace embedding: Given $\varepsilon > 0$ and $A \in \mathbb{R}^{n \times d}$, find matrix $M \in \mathbb{R}^{m \times d}$ with $m \ll n$, such that for every $x \in \mathbb{R}^d$,

 $(1 - \varepsilon) \|Ax\|_2^2 \le \|Mx\|_2^2 \le (1 + \varepsilon) \|Ax\|_2^2$

• Question: For a *fixed* $x \in \mathbb{R}^d$, how would we produce a matrix M such that $||Mx||_2^2 \approx ||Ax||_2^2$?

- Question: For a *fixed* $x \in \mathbb{R}^d$, how would we produce a matrix M such that $||Mx||_2^2 \approx ||Ax||_2^2$?
- Recall that $||Ax||_2^2 = \langle a_1, x \rangle^2 + \dots + \langle a_n, x \rangle^2$

• Hint #1: What if *M* is a weighted subset of rows of *A*, i.e., a coreset?

- Question: For a *fixed* $x \in \mathbb{R}^d$, how would we produce a matrix M such that $||Mx||_2^2 \approx ||Ax||_2^2$?
- Recall that $||Ax||_2^2 = \langle a_1, x \rangle^2 + \dots + \langle a_n, x \rangle^2$
- Hint #2: What if $\langle a_1, x \rangle^2 = \cdots = \langle a_n, x \rangle^2$?

Bernstein's Inequality

• Bernstein's inequality: Let $y_1, ..., y_n \in [-M, M]$ be independent random variables and let $y = y_1 + \cdots + y_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|y - \mu| \ge t] \le 2e^{-\frac{t^2}{2\sigma^2 + \frac{4}{3}Mt}}$$

Coreset Construction and Uniform Sampling

- Consider a fixed $x \in \mathbb{R}^d$, which induces "cost" $||Ax||_2^2$
- Suppose all rows have the same cost, $\langle a_1, x \rangle^2 = \cdots = \langle a_n, x \rangle^2$
- Can get a 2-approximation to $||Ax||_2^2$ even for $p = \Theta\left(\frac{1}{n}\right)$
- How many samples do we expect? $np = \Theta(1)$

Coreset Construction and Uniform Sampling

• Consider a fixed $x \in \mathbb{R}^d$, which induces "cost" $||Ax||_2^2$

Suppose all rows have cost between 1 and n

• Suppose $p_i = p$ for all $i \in [n]$

• How many rows do I need to sample to approximate $||Ax||_2^2$ within a $(1 + \varepsilon)$ -factor?

Uniform Sampling for Subspace Embedding

- Consider a fixed $x \in \mathbb{R}^d$, which induces "cost" $||Ax||_2^2$
- Suppose all rows have cost between 1 and n
- Suppose $p_i = p$ for all $i \in [n]$
- For Bernstein's inequality, we require $\frac{2n^2}{p} \approx \left(\frac{\|Ax\|_2^2}{2}\right)^2$ and $\|Ax\|_2^2$ can be as small as n, so we need $p \approx 1$

Coreset Construction and Sampling

- Importance sampling only needs *M* to have $O\left(\frac{1}{\varepsilon^2}\right)$ rows to achieve $(1 + \varepsilon)$ -approximation to $||Ax||_2^2$
- To handle all possible sets of *k* centers:
 - Need to sample each row a_i with probability $\max_{x \in \mathbb{R}^d} \frac{\langle a_1, x \rangle^2}{\|Ax\|_2^2}$

instead of $\frac{\langle a_1, x \rangle^2}{\|Ax\|_2^2}$

• Need to union bound over a net of all choices of $x \in \mathbb{R}^d$

Leverage Scores

10 11

• Intuition: how unique a row is (recall importance sampling)

• $\ell_i = \max_{x \in \mathbb{R}^d} \frac{\langle a_1, x \rangle^2}{\|Ax\|_2^2}$ are the *leverage scores* of *A* (in this case of row a_i)

• Take
$$x = (1 - 1)$$
 to see that $\ell_1 = 1$

• Take
$$x = (0 \ 1)$$
 to see that $\ell_2 = 1$

•
$$\ell_i = a_i (A^{\mathsf{T}} A)^{-1} a_i^{\mathsf{T}}, \ \Sigma \ell_i = d$$

