CSCE 689: Special Topics in Modern Algorithms for Data Science

Lecture 33

Samson Zhou

Presentation Schedule

- November 27: Chunkai, Jung, Galaxy Al
- November 29: STMI, Anmol, Jason
- December 1: Bokun, Ayesha, Dawei, Lipai

• [DMNS06] Given $\varepsilon > 0$ and $\delta \in (0,1)$, a randomized algorithm $A: U^* \to Y$ is (ε, δ) -differentially private if, for every neighboring frequency vectors f and f' and for all $E \subseteq Y$, $\Pr[A(f) \in E] \le e^{\varepsilon} \cdot \Pr[A(f') \in E] + \delta$

• [DMNS06] Given $\varepsilon > 0$ and $\delta \in (0,1)$, a randomized algorithm $A: U^* \to Y$ is (ε, δ) -differentially private if, for every neighboring frequency vectors f and f' and for all $E \subseteq Y$,

 $\Pr[A(f) \in E] \le e^{\varepsilon} \cdot \Pr[A(f') \in E] + \delta$

• [DMNS06] Given $\varepsilon > 0$ and $\delta \in (0,1)$, a randomized algorithm $A: U^* \to Y$ is (ε, δ) -differentially private if, for every neighboring frequency vectors f and f' and for all $E \subseteq Y$, $\Pr[A(f) \in E] \le e^{\varepsilon} \cdot \Pr[A(f') \in E] + \delta$

• For small ε , can think of e^{ε} as $1 + \varepsilon$

$$\Pr[A(f) \in E] \le (1 + \varepsilon) \cdot \Pr[A(f') \in E] + \delta$$

• [DMNS06] Given $\varepsilon > 0$ and $\delta \in (0,1)$, a randomized algorithm $A: U^* \to Y$ is (ε, δ) -differentially private if, for every neighboring frequency vectors f and f' and for all

• [DMNS06] Given $\varepsilon > 0$ and $\delta \in (0,1)$, a randomized algorithm $A: U^* \to Y$ is (ε, δ) -differentially private if, for every neighboring frequency vectors f and f' and for all $E \subseteq Y$, $\Pr[A(f) \in E] \le e^{\varepsilon} \cdot \Pr[A(f') \in E] + \delta$

• Implication: Deterministic algorithms cannot be differentially private unless they are a constant function

Differential Privacy Properties

 What properties would we like from a rigorous definition of privacy?

Differential Privacy Properties

- Privacy loss measure ε accumulates across multiple computations and datasets
 - If mechanism M_1 has privacy loss ε_1 and mechanism M_2 has privacy loss ε_2 , then releasing the results of both M_1 and M_2 has privacy loss $\varepsilon_1 + \varepsilon_2$
- Ability to handle post-processing
 - If mechanism M_1 has privacy loss ε_1 and we release $f(M_1)$, then we have privacy loss ε_1

How many people in the population satisfy some property?

How many people in this class have a pet?

How many people in this class have a pet?

What happens if each person answers with their truth?

How many people in this class have a pet?

- What happens if each person flips a coin and answers with the coin flip?
- Think of your favorite (integer) number:
 - If it is even, answer YES
 - Otherwise if it is odd, answer NO

How many people in this class have a pet?

- Think of your home address:
 - If it is even, answer truthfully
 - Otherwise, proceed below
- Think of your phone number:
 - If it is even, answer YES
 - Otherwise if it is odd, answer NO

How to estimate the true number?

• For any person i, let $X_i \in \{0,1\}$ be the true answer and let $Y_i \in \{0,1\}$ be the reported answer

•
$$\Pr[Y_i = X_i] = \frac{3}{4} \text{ and } \Pr[Y_i = 1 - X_i] = \frac{1}{4}$$

•
$$E[Y_i] = \frac{3}{4} \cdot X_i + \frac{1}{4} \cdot (1 - X_i) = \frac{X_i}{2} + \frac{1}{4}$$

•
$$\Pr[Y_i = X_i] = \frac{3}{4} \text{ and } \Pr[Y_i = 1 - X_i] = \frac{1}{4}$$

•
$$E[Y_i] = \frac{3}{4} \cdot X_i + \frac{1}{4} \cdot (1 - X_i) = \frac{X_i}{2} + \frac{1}{4}$$

• Let
$$Y = \frac{Y_1 + ... + Y_n}{n}$$
 and $X = \frac{X_1 + ... + X_n}{n}$

$$\bullet E[Y] = \frac{X}{2} + \frac{1}{4}$$

• Report 2 $\left(Y - \frac{1}{4}\right)$ for true fraction

Randomized Response

- $\Pr[Y_i = 1 \mid X_i = 1] = \frac{3}{4}$
- $\Pr[Y_i = 1 \mid X_i = 0] = \frac{1}{4}$
- $\Pr[Y_i = 1 \mid X_i = 0] \le 3 \cdot \Pr[Y_i = 1 \mid X_i = 1]$
- $\Pr[Y_i = 1 \mid X_i = 1] \le 3 \cdot \Pr[Y_i = 1 \mid X_i = 0]$
- Privacy loss ln 3

Differential Privacy

• [DMNS06] Given $\varepsilon > 0$ and $\delta \in (0,1)$, a randomized algorithm $A: U^* \to Y$ is (ε, δ) -differentially private if, for every neighboring frequency vectors f and f' and for all $E \subseteq Y$, $\Pr[A(f) \in E] \le e^{\varepsilon} \cdot \Pr[A(f') \in E] + \delta$

Local Differential Privacy (LDP)

• [KLNRS08] Given $\varepsilon > 0$ and $\delta \in (0,1)$, a randomized algorithm $A: U^* \to Y$ is (ε, δ) -differentially private if, for every pairs of users' possible data x and x' and for all $E \subseteq Y$, $\Pr[A(x) \in E] \le e^{\varepsilon} \cdot \Pr[A(x') \in E] + \delta$

- Algorithm takes a single user's data
- Compared to previous definition of DP, where algorithm takes all users' data

Local Differential Privacy (LDP)

- Mobile Data Analytics: LDP can be applied to data collected from mobile devices to allow analysis of aggregate movement patterns and trends without compromising the privacy of individual users
 - Location-based services
 - User behavior analysis

Privacy and Noise

Privacy and Noise

• Goal: release private approximation to f(x)

• Intuition: f(x) can be released accurately if the function f is not sensitive to changes by any of the individuals $x = x_1, ..., x_n$

• Sensitivity:
$$\sigma_f = \max_{\text{neighbors } x, x'} ||f(x) - f(x')||_1$$

Sensitivity

• Sensitivity:
$$\sigma_f = \max_{\text{neighbors } x, x'} ||f(x) - f(x')||_1$$

 Suppose a study is conducted that measures the height of individuals, ranging from 1 to 300 centimeters

- What is the sensitivity of the maximum height query?
- What is the sensitivity of the average height query?

Laplace Mechanism

• Goal: Algorithm computes f(x) and releases f(x) + Z, where $Z \sim \operatorname{Lap}\left(\frac{\sigma_f}{s}\right)$

 Laplacian distribution: Probability density function for Lap(b) is

$$p(x) = \frac{1}{2b} \exp\left(-\frac{|x|}{b}\right) = \frac{1}{2b} e^{\left(-\frac{|x|}{b}\right)}$$

Laplace Mechanism

 What does the Laplace mechanism do in the following cases?

 Suppose a study is conducted that measures the height of individuals, ranging from 1 to 300 centimeters

- What is the sensitivity of the maximum height query?
- What is the sensitivity of the average height query?

Laplace Mechanism

• Theorem: Laplace mechanism is ε -differentially private (pure DP)

Beyond Laplace Mechanism

• What if the output is not a scalar, e.g., a vector?

Suppose the outputs lie in some space Y

Beyond Laplace Mechanism

 Suppose a study is conducted that finds the current location of individuals, in the two-dimensional plane

Who is the closest individual to a query location?

Exponential Mechanism

• Choose a score function $S:(Y,X^n)\to\mathbb{R}$ and global sensitivity σ

• Sample $y \in Y$ with probability proportional to $\exp\left(\frac{\varepsilon}{2\sigma}S(y,x)\right)$

Exponential Mechanism

• Theorem: Exponential mechanism is ε -differentially private (pure DP)

• In fact, when Y is the set of the real numbers, there is a setting of the score function S for which the exponential mechanism reduces down to the Laplace mechanism

Downside: sampling process may be inefficient