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• For a certain task and input, algorithm is given advice

• Advice could be “good”, advice could be “bad”

• Goal: “Good” performance if the advice is good, “normal” performance if 
the advice is bad

Learning-Augmented Algorithms





• Better data structures: Bloom filters with lower false positive rates 
[Mitzenmacher18]

• Better space-accuracy tradeoff for streaming algorithms: Frequency 
estimation, e.g., CountMin, CountSketch [HsuIndykKatabiVakilian19], 
moment estimation, distinct elements [JiangLinRuanWoodruff20], triangle 
counting 
[ChenEdenIndykLinNarayananRubinfeldSilwalWagnerWoodruffZhang22] 

• Better size-accuracy tradeoff for sketching: Low-rank approximation 
[IndykVakilianYuan19]

Learning-Augmented Algorithms



• Warm-start to search algorithms: Binary search [LinLuoWoodruff22], Max-
flow [ChenSilwalVakilianZhang22], [DaviesMoseleyVassilvitskiiWang23], 
matchings [DinitzImLavastidaMoseleyVassilvitskii21]

• Better accuracy-sample complexity tradeoff: Support size estimation 
[EdenIndykNarayananRubinfeldSilwalWagner21]

• Better online algorithms: Set cover [BamasMaggioriSvensson20], 
[GrigorescuLinSilwalSongZhou23], Scheduling 
[LattanziLavastidaMoseleyVassilvitskii20], [ScullyGrosofMitzenmacher22]

• Better privacy-utility tradeoffs for DP: Quantile estimation 
[KhodakAminDickVassilvitskii23]

• Beating NP-hardness?

Learning-Augmented Algorithms





• Goal: Given dataset 𝑃 in 𝑑 dimensions, output a set 𝐶 of 𝑘 centers to 
minimize

Learning-Augmented Clustering
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• Goal: Given dataset 𝑃 in 𝑑 dimensions, output a set 𝐶 of 𝑘 centers to 
minimize

• NP-hard to even approximate within a factor of 1.07 [Cohen-AddadC.S.20, 
LeeSchmidtWright17] 

• Beyond worst-case: Clustering on inputs from some “nice” distribution, 
similar inputs or inputs with auxiliary information

• Hope: ML can guide the clustering, so we can overcome worst-case with 
advice!

Learning-Augmented Clustering
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• Suppose Π outputs noisy labels according to a (1 + 𝛼) approximate 
clustering 𝐶 and error rate 𝜆 ≤ 𝛼

Predictor

What is the 
label of 𝑥1?

What is the 
label of 𝑥2?

𝑥1 belongs 
to cluster 3

𝑥2 belongs 
to cluster 7



• Suppose Π outputs noisy labels according to a (1 + 𝛼) approximate 
clustering 𝐶 and error rate 𝜆 ≤ 𝛼

• Main result [EFSWZ22]: Algorithm that outputs a (1 + 𝑂 𝛼 ) approximate 
𝑘-means clustering in nearly linear time

• “Predictions can overcome complexity hardness barriers!”

Theoretical Guarantee



• Not enough to blindly follow predictions!

• Optimal cost ≈ 0

• Predictor with arbitrary small error has large cost!

Naïve Approach Does Not Work



• Can a predictor even help?

Naïve Approach Does Not Work

Cluster 1

Cluster 2



• Can a predictor even help?

Naïve Approach Does Not Work

single incorrect label

Cluster ?

Cluster 2



• Can a predictor even help?

• MUST have assumptions about the accuracy on each cluster

Naïve Approach Does Not Work

Cluster 2

Cluster ?



• [EFSWZ22]: Assume cluster sizes are “balanced”

• [NCN23]: Let 𝑃𝑖  be the optimal cluster with label 𝑖 and 𝑄𝑖 be the points that 
are labeled 𝑖. Then 𝑄𝑖 ∖ 𝑃𝑖 + 𝑃𝑖 ∖ 𝑄𝑖 ≤ 𝛼 ⋅ |𝑃𝑖|. 

Precision and Recall

Precision Recall



• Our approach: Closed-form solution for best center of a fixed set of points

Algorithmic Intuition

argmin𝑐 cost(𝑐, 𝑃) =
1

|𝑃|
෍

𝑝∈𝑃

𝑝

argmin𝑐 ෍

𝑝∈𝑃

𝑝 − 𝑐 2
2 =

1

|𝑃|
෍

𝑝∈𝑃

𝑝



• Consider each dimension separately

Algorithmic Intuition



• Consider each label separately

Algorithmic Intuition



Algorithmic Intuition

• Example:

Cluster 1

Cluster 2

Cluster 3



• Example: Consider the points with label 1

Algorithmic Intuition



• Example: Consider the points with label 1

• Consider each dimension separately

Algorithmic Intuition



• Example: Consider the histogram of points with label 1

Algorithmic Intuition



• Example: Consider the histogram of points with label 1

• Is it true that “pruning” away the outliers removes all incorrect points? 

Algorithmic Intuition



• Is it true that “pruning” away the outliers removes all incorrect points? NO!

Algorithmic Intuition



• Example: Consider the points with label 1

Algorithmic Intuition



• Consider each label and each dimension separately

• Our approach: Use ideas from robust mean estimation

Algorithmic Intuition

1 − 𝛼 𝑃 𝛼𝑄



• Case 1: 𝑄 is “far” from 𝑃

Algorithmic Intuition

1 − 𝛼 𝑃 𝛼𝑄



• Case 1: 𝑄 is “far” from 𝑃

• Can detect handle this case by “pruning” the distribution 

Algorithmic Intuition

1 − 𝛼 𝑃 𝛼𝑄



• Case 2: 𝑄 is “close” to 𝑃

Algorithmic Intuition

1 − 𝛼 𝑃
𝛼𝑄



• Case 2: 𝑄 is “close” to 𝑃

•  𝑄 cannot heavily affect the empirical mean 𝑃

Algorithmic Intuition

1 − 𝛼 𝑃
𝛼𝑄



• Algorithm: Find the mean of the shortest interval that contains 1 − 𝑂(𝛼)  
fraction of the points

Algorithmic Intuition

1 − 𝛼 𝑃 𝛼𝑄



• Algorithm: Find the mean of the shortest interval that contains 1 − 𝑂(𝛼)  
fraction of the points

Algorithm



• Robust mean estimation gives additive 𝛼 error to the location of the mean

• How does this affect the 𝑘-means clustering cost?

Analysis Overview



• Analysis: Robust mean gives 1 + 𝛼 -approximation to the 1-means 
clustering cost

• Recall: Consider each label and each dimension separately

Analysis Overview

1 − 𝛼 𝑃 𝛼𝑄



• Analysis: Robust mean gives 1 + 𝛼 -approximation to the 𝑘-means 
clustering cost

• Lemma: Let 𝑃, 𝑄 be sets of real numbers with 𝑃 ≥ 1 − 𝛼 𝑛 and 𝑄 ≤
𝛼𝑛. Let 𝑋 = 𝑃 ∪ 𝑄, let 𝐶𝑋 and 𝐶𝑃 be the means of 𝑋 and 𝑃. Then

• [InabaKatohlImai94]: 

Analysis Overview

Cost 𝑋, 𝐶𝑃 ≤ (1 + 𝛼)Cost(𝑋, 𝐶𝑋)

Cost 𝑋, 𝐶𝑃 ≤ Cost 𝑋, 𝐶𝑋 + 𝑋 ⋅ 𝐶𝑃 − 𝐶𝑋
2





• Case Study: Spectral clustering on graphs varying over time

• Dataset: Internet router graph varying over the course of a year

• Methodology: Compare to standard benchmarks while using various natural 
predictors, i.e., noisily perturb true labels and compare to baselines as 
function of error

Experimental Results



Conclusion: Our algorithm (using predictor) outperforms benchmarks such as 𝑘-
means ++ for low error while staying competitive with high corruptions

Dataset: Internet router graph varying over the course of a year, 𝑘 = 10



• NP-hard to even approximate within a factor of 1.07 [Cohen-AddadC.S.20, 
LeeSchmidtWright17]

• Main result [EFSWZ22]: Algorithm that outputs a (1 + 𝑂 𝛼 ) approximate 
𝑘-means clustering in nearly linear time

• Handles clustering with outliers

• Not enough to blindly follow predictions!

• Our approach: Use ideas from robust mean estimation

Summary



• Related work:

• Semi-supervised active clustering (SSAC) framework: Same cluster queries, 
[AKB16], [KG17], [MS17], [GHS18], [ABJK18], …, correlation clustering

• Future directions: 

• Other predictors (multiple labels per point), relationship with robust 
statistics, minimizing the number of queries

• Algorithms for (𝑘, 𝑧)-clustering, i.e., σ𝑝∈𝑃 min
𝑐∈𝐶

𝑝 − 𝑐 2
𝑧

• Algorithms for 𝐿𝑝-metrics, i.e., σ𝑝∈𝑃 min
𝑐∈𝐶

𝑝 − 𝑐 𝑝
𝑝

…and Beyond!
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