CSCE 689: Special Topics in Modern Algorithms for Data Science
 Lecture 4

Samson Zhou

Today

- Sign up for LaTeX scribe note slots
- Receive and consider list of potential projects/groups

Future

- Wednesday: Discuss potential project groups
- Friday: Email me the members/group name
- Future: Set up meetings to discuss proposed projects

Last Time: Expected Value

- The expected value of a random variable X over Ω is:

$$
\mathrm{E}[X]=\sum_{x \in \Omega} \operatorname{Pr}[X=x] \cdot x
$$

- The "average value of the random variable"
- Linearity of expectation: $\mathrm{E}[X+Y]=\mathrm{E}[X]+\mathrm{E}[Y]$

Last Time: Markov's Inequality

- Let $X \geq 0$ be a non-negative random variable. Then for any $t>0$:

$$
\operatorname{Pr}[X \geq t \cdot \mathrm{E}[X]] \leq \frac{1}{t}
$$

- Can rewrite as $\operatorname{Pr}[X \geq t] \leq \frac{\mathrm{E}[X]}{t}$
- "Bounding the deviation of a random variable in terms of its average"

Limitations of Markov's Inequality

- Let X be the outcome of a roll of a die. Then $\mathrm{E}[X]=3.5=\frac{7}{2}$

$$
\operatorname{Pr}[X \geq 6]=\operatorname{Pr}\left[X \geq \frac{12}{7} \cdot \frac{7}{2}\right] \leq \frac{7}{12} \approx 0.5833
$$

- We know $\operatorname{Pr}[X \geq 6]=\frac{1}{6} \approx 0.167$

Moments

- For $p>0$, the p-th moment of a random variable X over Ω is:

$$
\mathrm{E}\left[X^{p}\right]=\sum_{x \in \Omega} \operatorname{Pr}[X=x] \cdot x^{p}
$$

Variance

- The variance of a random variable X over Ω is:

$$
\operatorname{Var}[X]=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}
$$

- Can rewrite $\operatorname{Var}[X]=\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]$ since $\mathrm{E}[\mathrm{E}[X]]=\mathrm{E}[X]$
- "How far numbers are from the average"

Variance

- The variance of a random variable X over Ω is:

$$
\operatorname{Var}[X]=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}
$$

- Linearity of variance for independent random variables: $\operatorname{Var}[X+Y]=$ $\operatorname{Var}[X]+\operatorname{Var}[Y]$

Variance and Standard Deviation

- The variance of a random variable X over Ω is:

$$
\sigma^{2}=\operatorname{Var}[X]=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}
$$

- The standard deviation of a random variable X is σ, and measures how far apart the outcomes are
- Standard deviation is in the same unit as the data set

Variance

- Suppose X takes the value 1 with probability $\frac{1}{2}$ and takes the value -1 with probability $\frac{1}{2}$
- What is $\mathrm{E}[X]$?
- What is $\operatorname{Var}[X]$? What is $\operatorname{std}(X)$?

Variance

- Suppose Y takes the value 100 with probability $\frac{1}{2}$ and takes the value
-100 with probability $\frac{1}{2}$
- What is $\mathrm{E}[Y]$?
- What is $\operatorname{Var}[Y]$? What is $\operatorname{std}(Y)$?

Markov's Inequality

- Let $X \geq 0$ be a non-negative random variable. Then for any $t>0$:

$$
\operatorname{Pr}[X \geq t \cdot \mathrm{E}[X]] \leq \frac{1}{t}
$$

- Can rewrite as $\operatorname{Pr}[X \geq t] \leq \frac{\mathrm{E}[X]}{t}$

Markov's Inequality

- Let $X \geq 0$ be a non-negative random variable. Then for any $t>0$:

$$
\operatorname{Pr}[X \geq t \cdot \mathrm{E}[X]] \leq \frac{1}{t}
$$

- Can rewrite as $\operatorname{Pr}[X \geq t] \leq \frac{\mathrm{E}[X]}{t}$
- We have $\operatorname{Pr}[|X| \geq t]=\operatorname{Pr}\left[X^{2} \geq t^{2}\right]$

Using Markov's Inequality

- We have $\operatorname{Pr}[|X| \geq t]=\operatorname{Pr}\left[X^{2} \geq t^{2}\right]$

$$
\operatorname{Pr}[|X| \geq t]=\operatorname{Pr}\left[X^{2} \geq t^{2}\right] \leq \frac{E\left[X^{2}\right]}{t^{2}}
$$

- Plug in $X-\mathrm{E}[X]$ for X

$$
\operatorname{Pr}[|X-\mathrm{E}[X]| \geq t] \leq \frac{\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]}{t^{2}}
$$

Toward Chebyshev's Inequality

$$
\operatorname{Pr}[|X-\mathrm{E}[X]| \geq t] \leq \frac{\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]}{t^{2}}
$$

Chebyshev's Inequality

$$
\operatorname{Pr}[|X-\mathrm{E}[X]| \geq t] \leq \frac{\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]}{t^{2}}
$$

- Recall that $\operatorname{Var}[X]=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}=\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]$
- $\operatorname{Pr}[|X-\mathrm{E}[X]| \geq t] \leq \frac{\operatorname{Var}[X]}{t^{2}}$

Chebyshev's Inequality

- Let X be a random variable with expected value $\mu:=\mathrm{E}[X]$ and variance $\sigma^{2}:=\operatorname{Var}[X]$
- $\operatorname{Pr}[|X-\mathrm{E}[X]| \geq t] \leq \frac{\operatorname{Var}[X]}{t^{2}}$ becomes $\operatorname{Pr}[|X-\mathrm{E}[X]| \geq t] \leq \frac{\sigma^{2}}{t^{2}}$

$$
\operatorname{Pr}[|X-\mu| \geq k \sigma] \leq \frac{1}{k^{2}}
$$

- "Bounding the deviation of a random variable in terms of its variance"

Chebyshev's Inequality

- Let X be a random variable with expected value $\mu:=\mathrm{E}[X]$ and variance $\sigma^{2}:=\operatorname{Var}[X]$

$$
\operatorname{Pr}[|X-\mu| \geq k \sigma] \leq \frac{1}{k^{2}}
$$

- Do not require assumptions about X

Chebyshev's Inequality

- Let X be the outcome of a roll of a die. Then $\mathrm{E}[X]=3.5=\frac{7}{2}$ and $\operatorname{Var}[X]=\frac{35}{12} \approx 2.92$ so $\operatorname{std}(X) \approx 1.71$

$$
\begin{aligned}
\operatorname{Pr}[X \geq 6] & =\operatorname{Pr}[X-3.5 \geq 2.5] \\
& =\operatorname{Pr}[X-3.5 \geq 1.41 \cdot 1.71] \\
& \leq \frac{1}{1.41^{2}} \approx 0.4667
\end{aligned}
$$

- Recall that Markov's inequality bounded this 0.5833

Law of Large Numbers

- Let X_{1}, \ldots, X_{n} be random variables that are independent identically distributed (i.i.d.) with mean μ and variance σ^{2}
- Consider the sample average $X=\frac{1}{n} \sum_{i} X_{i}$. How does it compare to μ ?
- $\operatorname{Var}[X]=\frac{1}{n^{2}} \sum_{i} \operatorname{Var}\left[X_{i}\right]=\frac{\sigma^{2}}{n}$
- By Chebyshev's inequality, $\operatorname{Pr}[|S-\mu| \geq t] \leq \frac{\sigma^{2}}{n t}$

Law of Large Numbers

- By Chebyshev's inequality, $\operatorname{Pr}[|S-\mu| \geq t] \leq \frac{\sigma^{2}}{n t}$
- Law of Large Numbers: The sample average will always concentrate to the mean, given enough samples

