CSCE 689: Special Topics in Modern Algorithms for Data Science

Lecture 4

Samson Zhou

• Sign up for LaTeX scribe note slots

• Receive and consider list of potential projects/groups

Future

- Wednesday: Discuss potential project groups
- Friday: Email me the members/group name

• Future: Set up meetings to discuss proposed projects

Last Time: Expected Value

• The expected value of a random variable X over Ω is:

$$\mathbf{E}[X] = \sum_{x \in \Omega} \Pr[X = x] \cdot x$$

• The "average value of the random variable"

• Linearity of expectation: E[X + Y] = E[X] + E[Y]

Last Time: Markov's Inequality

• Let $X \ge 0$ be a non-negative random variable. Then for any t > 0:

$$\Pr[X \ge t \cdot \mathbf{E}[X]] \le \frac{1}{t}$$

- Can rewrite as $\Pr[X \ge t] \le \frac{\mathbb{E}[X]}{t}$
- "Bounding the deviation of a random variable in terms of its average"

Limitations of Markov's Inequality

• Let X be the outcome of a roll of a die. Then $E[X] = 3.5 = \frac{7}{2}$

$$\Pr[X \ge 6] = \Pr\left[X \ge \frac{12}{7} \cdot \frac{7}{2}\right] \le \frac{7}{12} \approx 0.5833$$

• We know
$$\Pr[X \ge 6] = \frac{1}{6} \approx 0.167$$

Moments

• For p > 0, the p-th moment of a random variable X over Ω is:

$$\mathbf{E}[X^p] = \sum_{x \in \Omega} \Pr[X = x] \cdot x^p$$

Variance

• The variance of a random variable X over Ω is: $Var[X] = E[X^2] - (E[X])^2$

• Can rewrite $Var[X] = E[(X - E[X])^2]$ since E[E[X]] = E[X]

• "How far numbers are from the average"

Variance

• The variance of a random variable X over Ω is: $Var[X] = E[X^2] - (E[X])^2$

Linearity of variance for *independent* random variables: Var[X + Y] = Var[X] + Var[Y]

Variance and Standard Deviation

• The variance of a random variable X over Ω is:

$$\sigma^2 = Var[X] = E[X^2] - (E[X])^2$$

- The standard deviation of a random variable X is σ, and measures how far apart the outcomes are
- Standard deviation is in the same unit as the data set

Variance

- Suppose X takes the value 1 with probability $\frac{1}{2}$ and takes the value -1 with probability $\frac{1}{2}$
- What is **E**[X]?
- What is Var[X]? What is std(X)?

Variance

- Suppose Y takes the value 100 with probability $\frac{1}{2}$ and takes the value -100 with probability $\frac{1}{2}$
- What is **E**[*Y*]?
- What is Var[Y]? What is std(Y)?

Markov's Inequality

• Let $X \ge 0$ be a non-negative random variable. Then for any t > 0:

$$\Pr[X \ge t \cdot \mathbb{E}[X]] \le \frac{1}{t}$$

• Can rewrite as $\Pr[X \ge t] \le \frac{\mathbb{E}[X]}{t}$

Markov's Inequality

• Let $X \ge 0$ be a non-negative random variable. Then for any t > 0:

$$\Pr[X \ge t \cdot \mathrm{E}[X]] \le \frac{1}{t}$$

- Can rewrite as $\Pr[X \ge t] \le \frac{\mathbb{E}[X]}{t}$
- We have $\Pr[|X| \ge t] = \Pr[X^2 \ge t^2]$

Using Markov's Inequality

• We have $\Pr[|X| \ge t] = \Pr[X^2 \ge t^2]$

$$\Pr[|X| \ge t] = \Pr[X^2 \ge t^2] \le \frac{E[X^2]}{t^2}$$

• Plug in X - E[X] for X

$$\Pr[|X - E[X]| \ge t] \le \frac{E[(X - E[X])^2]}{t^2}$$

Toward Chebyshev's Inequality

$$\Pr[|X - E[X]| \ge t] \le \frac{E[(X - E[X])^2]}{t^2}$$

$$\Pr[|X - E[X]| \ge t] \le \frac{E[(X - E[X])^2]}{t^2}$$

• Recall that $Var[X] = E[X^2] - (E[X])^2 = E[(X - E[X])^2]$

•
$$\Pr[|X - E[X]| \ge t] \le \frac{\operatorname{Var}[X]}{t^2}$$

• Let X be a random variable with expected value $\mu \coloneqq E[X]$ and variance $\sigma^2 \coloneqq Var[X]$

•
$$\Pr[|X - E[X]| \ge t] \le \frac{\operatorname{Var}[X]}{t^2}$$
 becomes $\Pr[|X - E[X]| \ge t] \le \frac{\sigma^2}{t^2}$
 $\Pr[|X - \mu| \ge k\sigma] \le \frac{1}{k^2}$

• "Bounding the deviation of a random variable in terms of its variance"

• Let X be a random variable with expected value $\mu \coloneqq E[X]$ and variance $\sigma^2 \coloneqq Var[X]$

$$\Pr[|X - \mu| \ge k\sigma] \le \frac{1}{k^2}$$

• Do not require assumptions about X

- Let X be the outcome of a roll of a die. Then $E[X] = 3.5 = \frac{7}{2}$ and $Var[X] = \frac{35}{12} \approx 2.92$ so $std(X) \approx 1.71$ $Pr[X \ge 6] = Pr[X - 3.5 \ge 2.5]$ $= Pr[X - 3.5 \ge 1.41 \cdot 1.71]$ $\leq \frac{1}{1.41^2} \approx 0.4667$
- Recall that Markov's inequality bounded this 0.5833

Law of Large Numbers

- Let X_1, \ldots, X_n be random variables that are independent identically distributed (i.i.d.) with mean μ and variance σ^2
- Consider the sample average $X = \frac{1}{n} \sum_{i} X_{i}$. How does it compare to μ ?

• Var[X] =
$$\frac{1}{n^2} \sum_i \operatorname{Var}[X_i] = \frac{\sigma^2}{n}$$

• By Chebyshev's inequality, $\Pr[|S - \mu| \ge t] \le \frac{\sigma^2}{nt}$

Law of Large Numbers

• By Chebyshev's inequality, $\Pr[|S - \mu| \ge t] \le \frac{\sigma^2}{nt}$

• Law of Large Numbers: The sample average will always concentrate to the mean, given enough samples