# CSCE 689: Special Topics in Modern Algorithms for Data Science <br> Lecture 5 

Samson Zhou

## Present and Future

- Today: Discuss potential project groups
- Friday: Email me the members/group name
- Future: Set up meetings to discuss proposed projects


## Recall: Concentration Inequalities

- Concentration inequalities bound the probability that a random variable is "far away" from its expectation
- Often used in understanding the performance of statistical tests, the behavior of data sampled from various distributions, and for our purposes, the guarantees of randomized algorithms


## Last Time: Moments

- For $p>0$, the $p$-th moment of a random variable $X$ over $\Omega$ is:

$$
\mathrm{E}\left[X^{p}\right]=\sum_{x \in \Omega} \operatorname{Pr}[X=x] \cdot x^{p}
$$

## Last Time: Variance

- The variance of a random variable $X$ over $\Omega$ is:

$$
\operatorname{Var}[X]=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}
$$

- Can rewrite $\operatorname{Var}[X]=\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]$ since $\mathrm{E}[\mathrm{E}[X]]=\mathrm{E}[X]$
- "How far numbers are from the average"


## Last Time: Chebyshev's Inequality

- Let $X$ be a random variable with expected value $\mu:=\mathrm{E}[X]$ and variance $\sigma^{2}:=\operatorname{Var}[X]$
- $\operatorname{Pr}[|X-\mathrm{E}[X]| \geq t] \leq \frac{\operatorname{Var}[X]}{t^{2}}$ becomes $\operatorname{Pr}[|X-\mathrm{E}[X]| \geq t] \leq \frac{\sigma^{2}}{t^{2}}$

$$
\operatorname{Pr}[|X-\mu| \geq k \sigma] \leq \frac{1}{k^{2}}
$$

- "Bounding the deviation of a random variable in terms of its variance"


## Last Time: Law of Large Numbers

- Let $X_{1}, \ldots, X_{n}$ be random variables that are independent identically distributed (i.i.d.) with mean $\mu$ and variance $\sigma^{2}$
- Consider the sample average $X=\frac{1}{n} \sum_{i} X_{i}$. How does it compare to $\mu$ ?
- $\operatorname{Var}[X]=\frac{1}{n^{2}} \sum_{i} \operatorname{Var}\left[X_{i}\right]=\frac{\sigma^{2}}{n}$
- Law of Large Numbers: The sample average will always concentrate to the mean, given enough samples


## Use Case

- Suppose we design a randomized algorithm $A$ to estimate a hidden statistic $Z$ of a dataset and we know $0<Z \leq 1000$
- Suppose each time we use the algorithm $A$, it outputs a number $X$ such that $\mathrm{E}[X]=Z$ and $\operatorname{Var}[X]=100 Z^{2}$
- What can we say about $A$ ?
- $\operatorname{Pr}[|X-Z| \geq 30 Z] \leq \frac{1}{9}$ and $Z \leq 1000$ so $\operatorname{Pr}[|X-Z|<30,000]>\frac{8}{9}$


## Accuracy Boosting

- How can we use $A$ to get additive error $\varepsilon$ ?


## Accuracy Boosting

- How can we use $A$ to get additive error $\varepsilon$ ?
- Repeat $A$ a total of $\frac{10^{12}}{\varepsilon^{2}}$ times and take the average
- The variance of the average is $\frac{\varepsilon^{2}}{10^{10}} Z$ and $\operatorname{Pr}[|X-\mu| \geq k] \leq \frac{\sigma^{2}}{k^{2}}$
- $\operatorname{Pr}[|X-Z| \geq \varepsilon] \leq \frac{Z}{10^{10}}$ and $Z \leq 1000$ so $\operatorname{Pr}[|X-Z|<\varepsilon]>0.999$


## Accuracy Boosting

- Algorithmic consequence of Law of Large Numbers
- To improve the accuracy of your algorithm, run it many times independently and take the average


## Limitations

- Suppose we flip a fair coin $n=100$ times and let $H$ be the total number of heads
- $\mathrm{E}[H]=50$ and $\operatorname{Var}[H]=25$
- Markov's inequality: $\operatorname{Pr}[H \geq 60] \leq 0.833$
- Chebyshev's inequality: $\operatorname{Pr}[H \geq 60] \leq 0.25$
- Truth: $\operatorname{Pr}[H \geq 60] \approx 0.0284$


## Intuition for Previous Inequalities

- Recall: We proved Markov's inequality by looking at the first moment of the random variable $X$

$$
\operatorname{Pr}[X \geq t \cdot \mathrm{E}[X]] \leq \frac{1}{t}
$$

- Recall: We proved Chebyshev's inequality by applying Markov to the second moment of the random variable $X-\mathrm{E}[X]$

$$
\operatorname{Pr}[|X-\mathrm{E}[X]| \geq t]=\operatorname{Pr}\left[|X-\mathrm{E}[X]|^{2} \geq t^{2}\right] \leq \frac{\operatorname{Var}[X]}{t^{2}}
$$

## Generalizations

- Suppose we flip a fair coin $n=100$ times and let $H$ be the total number of heads
- What if we consider higher moments?
- Looking at the $4^{\text {th }}$ moment: $\operatorname{Pr}[H \geq 60] \leq 0.186$
- Markov's inequality: $\operatorname{Pr}[H \geq 60] \leq 0.833$
- Chebyshev's inequality: $\operatorname{Pr}[H \geq 60] \leq 0.25$
- Truth: $\operatorname{Pr}[H \geq 60] \approx 0.0284$


## Concentration Inequalities

- Looking at the $k^{\text {th }}$ moment for sufficiently high $k$ gives a number of very strong (and useful!) concentration inequalities with exponential tail bounds
- Chernoff bounds, Bernstein's inequality, Hoeffding's inequality, etc.


## Bernstein's Inequality

- Bernstein's inequality: Let $X_{1}, \ldots, X_{n} \in[-M, M]$ be independent random variables and let $X=X_{1}+\cdots+X_{n}$ have mean $\mu$ and variance $\sigma^{2}$. Then for any $t \geq 0$ :

$$
\operatorname{Pr}[|X-\mu| \geq t] \leq 2 e^{-\frac{t^{2}}{2 \sigma^{2}+\frac{4}{3} M t}}
$$

## Bernstein's Inequality

- Berstein's inequality: Let $X_{1}, \ldots, X_{n} \in[-M, M]$ be independent random variables and let $X=X_{1}+\cdots+X_{n}$ have mean $\mu$ and variance $\sigma^{2}$. Then for any $t \geq 0$ :

$$
\operatorname{Pr}[|X-\mu| \geq t] \leq 2 e^{-\frac{t^{2}}{2 \sigma^{2}+\frac{4}{3} M t}}
$$

- Example: Suppose $M=1$ and let $t=k \sigma$. Then

$$
\operatorname{Pr}[|X-\mu| \geq k \sigma] \leq 2 \exp \left(-\frac{k^{2}}{4}\right)
$$

## Bernstein's Inequality

- Suppose $M=1$ and let $t=k \sigma$. Then

$$
\operatorname{Pr}[|X-\mu| \geq k \sigma] \leq 2 \exp \left(-\frac{k^{2}}{4}\right)
$$

- Compare to Chebyshev's inequality:

$$
\operatorname{Pr}[|X-\mu| \geq k \sigma] \leq \frac{1}{k^{2}}
$$

- Exponential improvement!


## Bernstein's Inequality

- Suppose we flip a fair coin $n=100$ times and let $H$ be the total number of heads
- Markov's inequality: $\operatorname{Pr}[H \geq 60] \leq 0.833$
- Chebyshev's inequality: $\operatorname{Pr}[H \geq 60] \leq 0.25$
- $4^{\text {th }}$ moment: $\operatorname{Pr}[H \geq 60] \leq 0.186$
- Bernstein's inequality: $\operatorname{Pr}[H \geq 60] \leq 0.15$
- Truth: $\operatorname{Pr}[H \geq 60] \approx 0.0284$


## Bernstein's Inequality

- Suppose $M=1$ and let $t=k \sigma$. Then

$$
\operatorname{Pr}[|X-\mu| \geq k \sigma] \leq 2 \exp \left(-\frac{k^{2}}{4}\right)
$$

- Plot across values of $k$ looks like normal random variable
- PDF of Gaussian $\mathrm{N}\left(0, \sigma^{2}\right)$ is

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{x^{2}}{2 \sigma^{2}}}
$$



## Central Limit Theorem

- Stronger Central Limit Theorem: The distribution of the sum of $n$ bounded independent random variables converges to a Gaussian (normal) distribution as $n$ goes to infinity
- Why is the Gaussian distribution is so important in statistics, data science, ML, etc.?
- Many random variables can be approximated as the sum of a large number of small and roughly independent random effects. Thus, their distribution looks Gaussian by CLT.

