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Present and Future

• Today: Discuss potential project groups

• Friday: Email me the members/group name

• Future: Set up meetings to discuss proposed projects



Recall: Concentration Inequalities

• Concentration inequalities bound the probability that a random 
variable is “far away” from its expectation

• Often used in understanding the performance of statistical tests, the 
behavior of data sampled from various distributions, and for our 
purposes, the guarantees of randomized algorithms



Last Time: Moments

• For 𝑝 > 0, the 𝑝-th moment of a random variable 𝑋 over Ω is:

E 𝑋𝑝 = 

𝑥∈Ω

Pr 𝑋 = 𝑥 ⋅ 𝑥𝑝



Last Time: Variance

• The variance of a random variable 𝑋 over Ω is:

• Can rewrite Var 𝑋 = E 𝑋 − E 𝑋 2  since E E 𝑋 = E[𝑋]

• “How far numbers are from the average”

Var 𝑋 = E 𝑋2 − E 𝑋 2



Last Time: Chebyshev’s Inequality

• Let 𝑋 be a random variable with expected value 𝜇 ≔ E[𝑋] and 
variance 𝜎2 ≔ Var 𝑋

• Pr 𝑋 − E[𝑋] ≥ 𝑡 ≤
Var[𝑋]

𝑡2   becomes Pr 𝑋 − E[𝑋] ≥ 𝑡 ≤
𝜎2

𝑡2  

• “Bounding the deviation of a random variable in terms of its variance”

Pr 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤
1

𝑘2



Last Time: Law of Large Numbers

• Let 𝑋1, … , 𝑋𝑛 be random variables that are independent identically 
distributed (i.i.d.) with mean 𝜇 and variance 𝜎2

• Consider the sample average 𝑋 =
1

𝑛
σ𝑖 𝑋𝑖. How does it compare to 𝜇?

• Var 𝑋 =
1

𝑛2
σ𝑖 Var 𝑋𝑖 =

𝜎2

𝑛
 

• Law of Large Numbers: The sample average will always concentrate to 
the mean, given enough samples



Use Case

• Suppose we design a randomized algorithm 𝐴 to estimate a hidden 
statistic 𝑍 of a dataset and we know 0 < 𝑍 ≤ 1000

• Suppose each time we use the algorithm 𝐴, it outputs a number 𝑋 
such that E 𝑋 = 𝑍 and Var 𝑋 = 100𝑍2

• What can we say about 𝐴? 

• Pr 𝑋 − 𝑍 ≥ 30𝑍 ≤
1

9
 and 𝑍 ≤ 1000 so Pr 𝑋 − 𝑍 < 30,000 >

8

9
 



Accuracy Boosting

• How can we use 𝐴 to get additive error 𝜀?



Accuracy Boosting

• How can we use 𝐴 to get additive error 𝜀?

• Repeat 𝐴 a total of 
1012

𝜀2  times and take the average

• The variance of the average is 
𝜀2

1010 𝑍 and Pr 𝑋 − 𝜇 ≥ 𝑘 ≤
𝜎2

𝑘2

• Pr 𝑋 − 𝑍 ≥ 𝜀 ≤
𝑍

1010 and 𝑍 ≤ 1000 so Pr 𝑋 − 𝑍 < 𝜀 > 0.999 



Accuracy Boosting

• Algorithmic consequence of Law of Large Numbers

• To improve the accuracy of your algorithm, run it many times 
independently and take the average



Limitations

• Suppose we flip a fair coin 𝑛 = 100 times and let 𝐻 be the total 
number of heads

• E 𝐻 = 50 and Var 𝐻 = 25

• Markov’s inequality: Pr 𝐻 ≥ 60 ≤ 0.833

• Chebyshev’s inequality: Pr 𝐻 ≥ 60 ≤ 0.25

• Truth: Pr 𝐻 ≥ 60 ≈ 0.0284



Intuition for Previous Inequalities

• Recall: We proved Markov’s inequality by looking at the first moment 
of the random variable 𝑋

• Recall: We proved Chebyshev’s inequality by applying Markov to the 
second moment of the random variable 𝑋 − E[𝑋]

Pr 𝑋 − E[𝑋] ≥ 𝑡 = Pr 𝑋 − E 𝑋 2 ≥ 𝑡2 ≤
Var[𝑋]

𝑡2

Pr 𝑋 ≥ 𝑡 ⋅ E[𝑋] ≤
1

𝑡



Generalizations

• Suppose we flip a fair coin 𝑛 = 100 times and let 𝐻 be the total 
number of heads

• What if we consider higher moments?

• Looking at the 4th moment: Pr 𝐻 ≥ 60 ≤ 0.186

• Markov’s inequality: Pr 𝐻 ≥ 60 ≤ 0.833

• Chebyshev’s inequality: Pr 𝐻 ≥ 60 ≤ 0.25

• Truth: Pr 𝐻 ≥ 60 ≈ 0.0284



Concentration Inequalities

• Looking at the 𝑘th moment for sufficiently high 𝑘 gives a number of 
very strong (and useful!) concentration inequalities with exponential 
tail bounds

• Chernoff bounds, Bernstein’s inequality, Hoeffding’s inequality, etc. 



Bernstein’s Inequality

• Bernstein’s inequality: Let 𝑋1, … , 𝑋𝑛 ∈ [−𝑀, 𝑀] be independent 
random variables and let 𝑋 = 𝑋1 + ⋯ + 𝑋𝑛 have mean 𝜇 and 
variance 𝜎2. Then for any 𝑡 ≥ 0:

Pr 𝑋 − 𝜇 ≥ 𝑡 ≤ 2𝑒
−

𝑡2

2𝜎2+
4
3

𝑀𝑡



Bernstein’s Inequality

• Berstein’s inequality: Let 𝑋1, … , 𝑋𝑛 ∈ [−𝑀, 𝑀] be independent 
random variables and let 𝑋 = 𝑋1 + ⋯ + 𝑋𝑛 have mean 𝜇 and 
variance 𝜎2. Then for any 𝑡 ≥ 0:

• Example: Suppose 𝑀 = 1 and let 𝑡 = 𝑘𝜎. Then

Pr 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤ 2exp −
𝑘2

4

Pr 𝑋 − 𝜇 ≥ 𝑡 ≤ 2𝑒
−

𝑡2

2𝜎2+
4
3

𝑀𝑡



Bernstein’s Inequality

• Suppose 𝑀 = 1 and let 𝑡 = 𝑘𝜎. Then

• Compare to Chebyshev’s inequality:

• Exponential improvement!

Pr 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤ 2exp −
𝑘2

4

Pr 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤
1

𝑘2



Bernstein’s Inequality

• Suppose we flip a fair coin 𝑛 = 100 times and let 𝐻 be the total 
number of heads

• Markov’s inequality: Pr 𝐻 ≥ 60 ≤ 0.833

• Chebyshev’s inequality: Pr 𝐻 ≥ 60 ≤ 0.25

• 4th moment: Pr 𝐻 ≥ 60 ≤ 0.186

• Bernstein’s inequality: Pr 𝐻 ≥ 60 ≤ 0.15

• Truth: Pr 𝐻 ≥ 60 ≈ 0.0284



Bernstein’s Inequality

• Suppose 𝑀 = 1 and let 𝑡 = 𝑘𝜎. Then

Pr 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤ 2exp −
𝑘2

4
• Plot across values of 𝑘 looks like 

normal random variable

• PDF of Gaussian N 0, 𝜎2  is

𝑝 𝑥 =
1

2𝜋𝜎2
𝑒

−
𝑥2

2𝜎2



Central Limit Theorem

• Stronger Central Limit Theorem: The distribution of the sum of 𝑛 
bounded independent random variables converges to a Gaussian 
(normal) distribution as 𝑛 goes to infinity

• Why is the Gaussian distribution is so important in statistics, data 
science, ML, etc.?

• Many random variables can be approximated as the sum of a large 
number of small and roughly independent random effects. Thus, their 
distribution looks Gaussian by CLT.
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