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Present and Future

* Today: Discuss potential project groups
 Friday: Email me the members/group name

e Future: Set up meetings to discuss proposed projects



Recall: Concentration Inequalities

* Concentration inequalities bound the probability that a random
variable is “far away” from its expectation

e Often used in understanding the performance of statistical tests, the
behavior of data sampled from various distributions, and for our
purposescthe guarantees of randomized algorithms>




Last Time: Moments

* Forp > 0, the p-th moment of a random variable X over () is:

E[XP] = z PriX = x] - xP



Last Time: Variance

 The variance of a random variable X over (1 is:
Var[X] = E[X?*] — (E[X])*

» Can rewrite Var[X] = E[(X — E[X])?] since E|E[X]| = E[X]

* “How far numbers are from the average”



Last Time: Chebyshev’s Inequality

* Let X be a random variable with expected value u := E[X] and
variance % = Var[X]

2
Var[ ! becomes Pr(|X —E[X]| = t] <<

= £2

* Pr{lX —E[X]| = t] <

1
Pr[|X — u| = ko] < )

* “Bounding the deviation of a random variable in terms of its variance”



Last Time: Law of Large Numbers

* Let X4, ..., X,, be random variables that are independent identically
distributed (i.i.d.) with mean u and variance o

. 1 .
* Consider the sample average X = gZiXi- How does it compare to u?

0.2
n

e Var[X] = %ZiVar[Xi] =

e Law of Large Numbers: The sample average will always concentrate to
the mean, given enough samples



Use Case

* Suppose we design a randomized algorithm A to estimate a hidden
statistic Z of a dataset and we know 0 < Z < 1000

e Suppose each time we use the algorithm 4, it outputs a number X
such that E[X] = Z and Var[X] = 10077

 What can we say about A?

* Pr[|X —Z| = 30Z] < éand Z <1000so Pr[|X —Z| < 30,000] >

O |



Accuracy Boosting

* How can we use A to get additive error £7?



Accuracy Boosting

* How can we use A to get additive error £7?

12

10
* Repeat A a total of —;
&

times and take the average

X —ul 2kl <%

*Pri| X —Z| = €] <

[1X —Z| < €] > 0.999



Accuracy Boosting

* Algorithmic consequence of Law of Large Numbers

* To improve the accuracy of your algorithm, run it many times
independently and take the average



Limitations

* Suppose we flip a fair coinn = 100 times and let H be the total
number of heads

« E|H| = 50 and Var|H| = 25

* Markov’s inequality: Pr|H = 60] < 0.833
* Chebyshev’s inequality: Pr[H = 60] < 0.25
* Truth: Pr|H = 60] =~ 0.0284



Intuition for Previous Inequalities

» Recall: We proved Markov’s inequality by looking at the first moment
of the random variable X

PriX >t - E[X]] < %

* Recall: We proved Chebyshev’s inequality by applying Markov to the
second moment of the random variable X — E[X]

V
- ar|X]|
S0

Pr[|X — E[X]| = t] = Pr[|X — E[X]|? = t?]



Generalizations

* Suppose we flip a fair coinn = 100 times and let H be the total
number of heads

* What if we consider higher moments?
 Looking at the 4™ moment: Pr[H = 60] < 0.186

e Markov’s inequality: Pr[H = 60] < 0.833
e Chebyshev’s inequality: Pr[H > 60] < 0.25
* Truth: Pr[H = 60] =~ 0.0284



Concentration Inequalities

 Looking at the k™ moment for sufficiently high k gives a number of
very strong (and useful!) concentration inequalities with exponential
tail bounds

* Chernoff bounds, Bernstein’s inequality, Hoeffding’s inequality, etc.



Bernstein’s Inequality

* Bernstein’s inequality: Let X4, ..., X,, € |—M, M| be independent
random variables and let X = X; + --- + X,, have mean u and
variance d*. Then for any t > 0:

t2
7}
Pr||X —u| = t] < 2e 20°+3Mt




Bernstein’s Inequality

* Berstein’s inequality: Let X4, ..., X,, € [—M, M| be independent
random variables and let X = X; + --- + X,, have mean u and
variance d*. Then for any t > 0:

t2
7}
Pr||X —u| = t] < 2e 20°+3Mt

e Example: Suppose M = 1 and lett = ko. Then ,
k
Pr[|X — ul = ko] < 2exp (— Z)



Bernstein’s Inequality

e Suppose M = 1 andlett = ko. Then
k2

Pr||X — u| = ko] < 2exp (— Z)

 Compare to Chebyshev’s inequality:
1
Prl|X — u| = ko] < )

* Exponential improvement!



Bernstein’s Inequality

* Suppose we flip a fair coinn = 100 times and let H be the total
number of heads

* Markov’s inequality: Pr|[H = 60] < 0.833

e Chebyshev’s inequality: Pr[H > 60] < 0.25
« 4t moment: Pr[H = 60] < 0.186
 Bernstein’s inequality: Pr|H > 60] < 0.15
* Truth: Pr|H = 60] =~ 0.0284



Bernstein’s Inequality

e Suppose M = 1 andlett = ko. Then
k2
Pr||X —u| = ko] < 2exp (— Z)

* Plot across values of k looks like
normal random variable

* PDF of Gaussian N(0, g%) is // \

1 _x% /s
p(x) = e 20°
V2mo? / | |




Central Limit Theorem

e Stronger Central Limit Theorem: The distribution of the sum of n
bounded independent random variables converges to a Gaussian
(normal) distribution as n goes to infinity

* Why is the Gaussian distribution is so important in statistics, data
science, ML, etc.?

* Many random variables can be approximated as the sum of a large
number of small and roughly independent random effects. Thus, their
distribution looks Gaussian by CLT.
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