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Recall: Concentration Inequalities

• Concentration inequalities bound the probability that a random 
variable is “far away” from its expectation

• Looking at the 𝑘th moment for sufficiently high 𝑘 gives a number of 
very strong (and useful!) concentration inequalities with exponential 
tail bounds

• Chernoff bounds, Bernstein’s inequality, Hoeffding’s inequality, etc. 



Recall: Concentration Inequalities

• Suppose we flip a fair coin 𝑛 = 100 times and let 𝐻 be the total 
number of heads

• Markov’s inequality: Pr 𝐻 ≥ 60 ≤ 0.833

• Chebyshev’s inequality: Pr 𝐻 ≥ 60 ≤ 0.25

• 4th moment: Pr 𝐻 ≥ 60 ≤ 0.186

• Bernstein’s inequality: Pr 𝐻 ≥ 60 ≤ 0.15

• Truth: Pr 𝐻 ≥ 60 ≈ 0.0284



Last Time: Chernoff Bounds

• Useful variant of Bernstein’s inequality when the random variables 
are binary

• Chernoff bounds: Let 𝑋1, … , 𝑋𝑛 ∈ {0, 1} be independent random 
variables and let 𝑋 = 𝑋1 + ⋯ + 𝑋𝑛 have mean 𝜇. Then for any 𝛿 ≥ 0:

Pr 𝑋 − 𝜇 ≥ 𝛿𝜇 ≤ 2 exp −
𝛿2𝜇

2 + 𝛿



Last Time: Median-of-Means Framework

• Suppose we design a randomized algorithm 𝐴 to estimate a hidden 
statistic 𝑍 of a dataset and we know 0 < 𝑍 ≤ 1000. 

• Suppose each time we use the algorithm 𝐴, it outputs a number 𝑋 
such that E 𝑋 = 𝑍 and Var 𝑋 = 100𝑍2

• Suppose we want to estimate 𝑍 to accuracy 𝜀, with probability 1 − 𝛿

• Accuracy boosting: Repeat 𝐴 a total of 
1012

𝜀2  times and take the mean

• Success boosting: Find the mean a total of 𝑂 log
1

𝛿
 times and take 

the median, to be correct with probability 1 − 𝛿



Last Time: Max Load

• Recall we fixed a value 𝑘 ∈ [𝑛]

• Pr 𝑋 ≥ 3 log 𝑛 ≤
1

𝑛2 means that with probability at least 1 −
1

𝑛2, we 

will get fewer than 3 log 𝑛 rolls with value 𝑘

• Union bound: With probability at least 1 −
1

𝑛
, no outcome will be 

rolled more than 3 log 𝑛 times



Hashing

• Suppose we have a number of files, how do we consistently store 
them in memory?
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• If we hash 𝑛 items, we 
require Θ(𝑛2) slots to 
avoid collisions



Dealing with Collisions

• Suppose we store multiple items in the same location as a linked list

• If the maximum number of collisions in a location is 𝑐, then could 
traverse a linked list of size 𝑐 for a query

• Query runtime: 𝑂(𝑐) 

ℎ(Matthew Chang) Jung Seo Matthew Chang



Collisions and Max Load

• With probability at least 1 −
1

𝑛
, no outcome will be rolled more than 

3 log 𝑛 times

• Worst case query time: 𝑂(log 𝑛) 

Jung Seo Matthew Chang



Hashing

• For 𝑂(1) query time, use 
Θ(𝑛2) slots to avoid 
collisions

• For 𝑂(log 𝑛) query time, 
use Θ(𝑛) slots with linked 
lists
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Coupon Collector

• Suppose we have a fair 𝑛-sided die. “On average”, how many times 
should we roll the die before we see all possible outcomes among the 
rolls? Example: 1, 5, 2, 4, 1, 3, 1, 6 for 𝑛 = 6

• Consider 𝑟 rolls

• Fix a specific outcome 𝑘 ∈ [𝑛]

• Let 𝑋𝑖 = 1 if the 𝑖-th roll is 𝑘 and 𝑋𝑖 = 0 otherwise



Coupon Collector

• The total number of rolls with value 𝑘 is 𝑋 = 𝑋1 + ⋯ + 𝑋𝑟

• E 𝑋 =
𝑟

𝑛
= 6 log 𝑛 for 𝑟 = 6𝑛 log 𝑛

• Recall Chernoff bounds:

• Pr 𝑋 ≤ log 𝑛 ≤
1

𝑛2

Pr 𝑋 ≤ 1 − 𝛿 𝜇 ≤ exp −
𝛿2𝜇

2



Coupon Collector

• Recall we fixed a value 𝑘 ∈ [𝑛]

• Pr 𝑋 ≤ log 𝑛 ≤
1

𝑛2 means that with probability at least 1 −
1

𝑛2, we 

will at least log 𝑛 rolls with value 𝑘

• Union bound: With probability at least 1 −
1

𝑛
, all outcomes will be 

rolled at least log 𝑛 times



End of Probability Unit



Trivia Question #1 (Birthday Paradox)

• Suppose we have a fair 𝑛-sided die. “On average”, how many times 
should we roll the die before we see a repeated outcome among the 
rolls? Example: 1, 5, 2, 4, 5

• Θ(1)

• Θ(log 𝑛)

• Θ( 𝑛)

• Θ(𝑛)



Trivia Question #3 (Max Load)

• Suppose we have a fair 𝑛-sided die that we roll 𝑛 times. “On average”, 
what is the largest number of times any outcome is rolled? Example: 
1, 5, 2, 4, 1, 3, 1 for 𝑛 = 7

• Θ(1)

• ෩Θ(log 𝑛)

• ෩Θ( 𝑛)

• ෩Θ(𝑛)



Trivia Question #4 (Coupon Collector)

• Suppose we have a fair 𝑛-sided die. “On average”, how many times 
should we roll the die before we see all possible outcomes among the 
rolls? Example: 1, 5, 2, 4, 1, 3, 1, 6 for 𝑛 = 6

• Θ 𝑛

• Θ 𝑛 log 𝑛

• Θ 𝑛 𝑛

• Θ 𝑛2



Dimensionality Reduction
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Big Data

• Not only many data points, but also many measurements per data 
point, i.e., very high dimensional data



Big Data

• Not only many data points, but also many measurements per data 
point, i.e., very high dimensional data

• Twitter has 450 million active monthly users (as of 2022), records 
(tens of) thousands of measurements per user: who they follow, who 
follows them, when they last visited the site, timestamps for specific 
interactions, how many tweets they have sent, the text of those 
tweets, etc...



Big Data

• Not only many data points, but also many measurements per data 
point, i.e., very high dimensional data

• A 3 minute Youtube clip with a resolution of 500 x 500 pixels at 15 
frames/second with 3 color channels is a recording of 2 billion pixel 
values. Even a 500 x 500 pixel color image has 750,000 pixel values



Big Data

• Not only many data points, but also many measurements per data 
point, i.e., very high dimensional data

• The human genome contains 3 billion+ base pairs. Genetic datasets 
often contain information on 100s of thousands+ mutations and 
genetic markers



Visualizing Big Data

• Data points are interpreted as high dimensional vectors, with real 
valued entries: 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑  

• Dataset is interpreted as 
a matrix: 𝑋 ∈ 𝑅𝑛×𝑑  with 
𝑘-th row 𝑥𝑘



Dimensionality Reduction

• Dimensionality Reduction: Transform the data points so that they 
have much smaller dimension

• Transformation should still capture the key aspects of 𝑥1, … , 𝑥𝑛

𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑 𝑦1, … , 𝑦𝑛 ∈ 𝑅𝑚 for 𝑚 ≪ 𝑑

𝑥𝑖 = (0, 1, 0, 0, 1, 0, 1, 1) 𝑦𝑖 = (−1, 2, 1)



Low Distortion Embedding

• Given 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑, a distance function 𝐷, and an accuracy 
parameter 𝜀 ∈ [0,1), a low-distortion embedding of 𝑥1, … , 𝑥𝑛 is a set 
of points 𝑦1, … , 𝑦𝑛, and a distance function 𝐷′ such that for all 𝑖, 𝑗 ∈
[𝑛]

1 − 𝜀 𝐷 𝑥𝑖 , 𝑥𝑗 ≤ 𝐷′ 𝑦𝑖 , 𝑦𝑗 ≤ 1 + 𝜀 𝐷 𝑥𝑖 , 𝑥𝑗



Euclidean Space

• For 𝑧 ∈ 𝑅𝑑, the ℓ2 norm of 𝑧 is denoted by 𝑧 2 and defined as:

𝑧 2 = 𝑧1
2 + 𝑧2

2 + ⋯ + 𝑧𝑑
2



Euclidean Space

• For 𝑧 ∈ 𝑅𝑑, the ℓ2 norm of 𝑧 is denoted by 𝑧 2 and defined as:

𝑧 2 = 𝑧1
2 + 𝑧2

2 + ⋯ + 𝑧𝑑
2

• For 𝑥, 𝑦 ∈ 𝑅𝑑, the distance 
function 𝐷 is denoted by ⋅ 2 
and defined as 𝑥 − 𝑦 2



Low Distortion Embedding for Euclidean Space

• Given 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑  and an accuracy parameter 𝜀 ∈ [0,1), a low-
distortion embedding of 𝑥1, … , 𝑥𝑛 is a set of points 𝑦1, … , 𝑦𝑛 such that 
for all 𝑖, 𝑗 ∈ [𝑛]

1 − 𝜀 𝑥𝑖 − 𝑥𝑗 2
≤ 𝑦𝑖 − 𝑦𝑗 2

≤ 1 + 𝜀 𝑥𝑖 − 𝑥𝑗 2

𝑥𝑖 − 𝑥𝑗 2 𝑦𝑖 − 𝑦𝑗 2



Examples: Embeddings for Euclidean Space

• Suppose 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑  all lie on the 1st - axis

• Take 𝑚 = 1 and 𝑦𝑖 to be the first coordinate of 𝑥𝑖 

• Then 𝑦𝑖 − 𝑦𝑗 2
= 𝑥𝑖 − 𝑥𝑗 2

 for all 𝑖, 𝑗 ∈ [𝑛]

• Embedding has no distortion
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