CSCE 689: Special Topics in Modern Algorithms for Data Science Lecture 7

Samson Zhou

Recall: Concentration Inequalities

- Concentration inequalities bound the probability that a random variable is "far away" from its expectation
- Looking at the $k^{\text {th }}$ moment for sufficiently high k gives a number of very strong (and useful!) concentration inequalities with exponential tail bounds
- Chernoff bounds, Bernstein's inequality, Hoeffding's inequality, etc.

Recall: Concentration Inequalities

- Suppose we flip a fair coin $n=100$ times and let H be the total number of heads
- Markov's inequality: $\operatorname{Pr}[H \geq 60] \leq 0.833$
- Chebyshev's inequality: $\operatorname{Pr}[H \geq 60] \leq 0.25$
- $4^{\text {th }}$ moment: $\operatorname{Pr}[H \geq 60] \leq 0.186$
- Bernstein's inequality: $\operatorname{Pr}[H \geq 60] \leq 0.15$
- Truth: $\operatorname{Pr}[H \geq 60] \approx 0.0284$

Last Time: Chernoff Bounds

- Useful variant of Bernstein's inequality when the random variables are binary
- Chernoff bounds: Let $X_{1}, \ldots, X_{n} \in\{0,1\}$ be independent random variables and let $X=X_{1}+\cdots+X_{n}$ have mean μ. Then for any $\delta \geq 0$:

$$
\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq 2 \exp \left(-\frac{\delta^{2} \mu}{2+\delta}\right)
$$

Last Time: Median-of-Means Framework

- Suppose we design a randomized algorithm A to estimate a hidden statistic Z of a dataset and we know $0<Z \leq 1000$.
- Suppose each time we use the algorithm A, it outputs a number X such that $\mathrm{E}[X]=Z$ and $\operatorname{Var}[X]=100 Z^{2}$
- Suppose we want to estimate Z to accuracy ε, with probability $1-\delta$
- Accuracy boosting: Repeat A a total of $\frac{10^{12}}{\varepsilon^{2}}$ times and take the mean
- Success boosting: Find the mean a total of $O\left(\log \frac{1}{\delta}\right)$ times and take the median, to be correct with probability $1-\delta$

Last Time: Max Load

- Recall we fixed a value $k \in[n]$
- $\operatorname{Pr}[X \geq 3 \log n] \leq \frac{1}{n^{2}}$ means that with probability at least $1-\frac{1}{n^{2}}$, we will get fewer than $3 \log n$ rolls with value k
- Union bound: With probability at least $1-\frac{1}{n^{\prime}}$, no outcome will be rolled more than $3 \log n$ times

Hashing

- Suppose we have a number of files, how do we consistently store them in memory?
- If we hash n items, we require $\Theta\left(n^{2}\right)$ slots to avoid collisions

$$
h(x)
$$

Dealing with Collisions

- Suppose we store multiple items in the same location as a linked list

- If the maximum number of collisions in a location is c, then could traverse a linked list of size c for a query
- Query runtime: $O(c)$

Collisions and Max Load

- With probability at least $1-\frac{1}{n}$, no outcome will be rolled more than $3 \log n$ times
- Worst case query time: $O(\log n)$

Hashing

- For O (1) query time, use $\Theta\left(n^{2}\right)$ slots to avoid collisions
- For $O(\log n)$ query time, use $\Theta(n)$ slots with linked lists

Wenjing Chen	
Chunkai Fu	
Ayesha Qamar \longrightarrow	
Shima Salehi \longrightarrow	
David Xiang \longrightarrow	
Shuo Xing \longrightarrow	

Coupon Collector

- Suppose we have a fair n-sided die. "On average", how many times should we roll the die before we see all possible outcomes among the rolls? Example: 1, 5, 2, 4, 1, 3, 1, 6 for $n=6$
- Consider r rolls
- Fix a specific outcome $k \in[n]$
- Let $X_{i}=1$ if the i-th roll is k and $X_{i}=0$ otherwise

Coupon Collector

- The total number of rolls with value k is $X=X_{1}+\cdots+X_{r}$
- $\mathrm{E}[X]=\frac{r}{n}=6 \log n$ for $r=6 n \log n$
- Recall Chernoff bounds:

$$
\operatorname{Pr}[X \leq(1-\delta) \mu] \leq \exp \left(-\frac{\delta^{2} \mu}{2}\right)
$$

- $\operatorname{Pr}[X \leq \log n] \leq \frac{1}{n^{2}}$

Coupon Collector

- Recall we fixed a value $k \in[n]$
- $\operatorname{Pr}[X \leq \log n] \leq \frac{1}{n^{2}}$ means that with probability at least $1-\frac{1}{n^{2}}$, we will at least $\log n$ rolls with value k
- Union bound: With probability at least $1-\frac{1}{n^{\prime}}$ all outcomes will be rolled at least $\log n$ times

End of Probability Unit

Trivia Question \#1 (Birthday Paradox)

- Suppose we have a fair n-sided die. "On average", how many times should we roll the die before we see a repeated outcome among the rolls? Example: 1, 5, 2, 4, 5
- $\Theta(1)$
- $\Theta(\log n)$
- $\Theta(\sqrt{n})$
- $\Theta(n)$

Trivia Question \#3 (Max Load)

- Suppose we have a fair n-sided die that we roll n times. "On average", what is the largest number of times any outcome is rolled? Example: $1,5,2,4,1,3,1$ for $n=7$
- $\Theta(1)$
- $\widetilde{\Theta}(\log n)$
- $\widetilde{\Theta}(\sqrt{n})$
- $\widetilde{\Theta}(n)$

Trivia Question \#4 (Coupon Collector)

- Suppose we have a fair n-sided die. "On average", how many times should we roll the die before we see all possible outcomes among the rolls? Example: 1, 5, 2, 4, 1, 3, 1, 6 for $n=6$
- $\Theta(n)$
- $\Theta(n \log n)$
- $\Theta(n \sqrt{n})$
- $\Theta\left(n^{2}\right)$

Dimensionality Reduction

Many images from:
Cameron Musco's
COMPSCI 514: Algorithms for Data Science

Big Data

- Not only many data points, but also many measurements per data point, i.e., very high dimensional data

Big Data

- Not only many data points, but also many measurements per data point, i.e., very high dimensional data
- Twitter has 450 million active monthly users (as of 2022), records (tens of) thousands of measurements per user: who they follow, who follows them, when they last visited the site, timestamps for specific interactions, how many tweets they have sent, the text of those tweets, etc...

Big Data

- Not only many data points, but also many measurements per data point, i.e., very high dimensional data
- A 3 minute Youtube clip with a resolution of 500×500 pixels at 15 frames/second with 3 color channels is a recording of 2 billion pixel values. Even a 500×500 pixel color image has 750,000 pixel values

Big Data

- Not only many data points, but also many measurements per data point, i.e., very high dimensional data
- The human genome contains 3 billion+ base pairs. Genetic datasets often contain information on 100s of thousands+ mutations and genetic markers

Visualizing Big Data

- Data points are interpreted as high dimensional vectors, with real valued entries: $x_{1}, \ldots, x_{n} \in R^{d}$
- Dataset is interpreted as a matrix: $X \in R^{n \times d}$ with k-th row x_{k}

Dimensionality Reduction

- Dimensionality Reduction: Transform the data points so that they have much smaller dimension

$$
x_{1}, \ldots, x_{n} \in R^{d} \longrightarrow y_{1}, \ldots, y_{n} \in R^{m} \quad \text { for } \quad m \ll d
$$

$5 \longrightarrow x_{i}=(0,1,0,0,1,0,1,1) \longrightarrow y_{i}=(-1,2,1)$

- Transformation should still capture the key aspects of x_{1}, \ldots, x_{n}

Low Distortion Embedding

- Given $x_{1}, \ldots, x_{n} \in R^{d}$, a distance function D, and an accuracy parameter $\varepsilon \in[0,1)$, a low-distortion embedding of x_{1}, \ldots, x_{n} is a set of points y_{1}, \ldots, y_{n}, and a distance function D^{\prime} such that for all $i, j \in$ [n]

$$
(1-\varepsilon) D\left(x_{i}, x_{j}\right) \leq D^{\prime}\left(y_{i}, y_{j}\right) \leq(1+\varepsilon) D\left(x_{i}, x_{j}\right)
$$

Euclidean Space

- For $z \in R^{d}$, the ℓ_{2} norm of z is denoted by $\|z\|_{2}$ and defined as:

$$
\|z\|_{2}=\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots+z_{d}^{2}}
$$

Euclidean Space

- For $z \in R^{d}$, the ℓ_{2} norm of z is denoted by $\|z\|_{2}$ and defined as:

$$
\|z\|_{2}=\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots+z_{d}^{2}}
$$

- For $x, y \in R^{d}$, the distance function D is denoted by $\|\cdot\|_{2}$ and defined as $\|x-y\|_{2}$

Low Distortion Embedding for Euclidean Space

- Given $x_{1}, \ldots, x_{n} \in R^{d}$ and an accuracy parameter $\varepsilon \in[0,1)$, a lowdistortion embedding of x_{1}, \ldots, x_{n} is a set of points y_{1}, \ldots, y_{n} such that for all $i, j \in[n]$

$$
(1-\varepsilon)\left\|x_{i}-x_{j}\right\|_{2} \leq\left\|y_{i}-y_{j}\right\|_{2} \leq(1+\varepsilon)\left\|x_{i}-x_{j}\right\|_{2}
$$

Examples: Embeddings for Euclidean Space

- Suppose $x_{1}, \ldots, x_{n} \in R^{d}$ all lie on the $1^{\text {st }}$ - axis
- Take $m=1$ and y_{i} to be the first coordinate of x_{i}
- Then $\left\|y_{i}-y_{j}\right\|_{2}=\left\|x_{i}-x_{j}\right\|_{2}$ for all $i, j \in[n]$
- Embedding has no distortion

