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Recall: Concentration Inequalities

* Concentration inequalities bound the probability that a random
variable is “far away” from its expectation

 Looking at the k™ moment for sufficiently high k gives a number of
very strong (and useful!) concentration inequalities with exponential
tail bounds

* Chernoff bounds, Bernstein’s inequality, Hoeffding’s inequality, etc.



Recall: Concentration Inequalities

* Suppose we flip a fair coinn = 100 times and let H be the total
number of heads

e Markov’s inequality: Pr|H = 60] < 0.833

e Chebyshev’s inequality: Pr[H = 60] < 0.25
« 4t moment: Pr[H = 60] < 0.186

* Bernstein’s inequality: Pr[H > 60] < 0.15
* Truth: Pr|H = 60] =~ 0.0284



Last Time: Chernoff Bounds

e Useful variant of Bernstein’s inequality when the random variables
are binary

* Chernoff bounds: Let X, ..., X,, € {0, 1} be independent random
variables and let X = X; + --- + X,, have mean u. Then for any 6 = 0:

5% u
Pri|X —u|l = du] < 2exp 5



Last Time: Median-of-Means Framework

* Suppose we design a randomized algorithm A to estimate a hidden
statistic Z of a dataset and we know 0 < Z < 1000.

e Suppose each time we use the algorithm A4, it outputs a number X
such that E[X] = Z and Var[X] = 10027

* Suppose we want to estimate Z to accuracy &, with probability 1 — o

112

* Accuracy boosting: Repeat A a total of times and take the mean

c2
* Success boosting: Find the mean a total of O (log%) times and take

the median, to be correct with probability 1 — 6



Last Time: Max Load

* Recall we fixed a value k € |n]

* Pr[X = 3logn| < % means that with probability at least 1 — %, we
will get fewer than 3 log n rolls with value k

* Union bound: With probability at least 1 — %, no outcome will be
rolled more than 3 logn times



Hashing

e Suppose we have a number of files, how do we consistently store
them in memory?
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Dealing with Collisions

* Suppose we store multiple items in the same location as a linked list

h(Matthew Chang)——| Jung Seo Matthew Chang

N

* |f the maximum number of collisions in a location is ¢, then could
traverse a linked list of size ¢ for a query

* Query runtime: 0(c)



Collisions and Max Load

. . 1 .
* With probability at least 1 — —, NO outcome will be rolled more than
3 logn times

* Worst case query time: O (logn)
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Hashing

* For O(1) query time, use
0(n?) slots to avoid
collisions

* For O(logn) query time,
use O (n) slots with linked
lists
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Coupon Collector

e Suppose we have a fair n-sided die. “On average”, how many times
should we roll the die before we see all possible outcomes among the
rolls? Example: 1,5,2,4,1,3,1,6forn =6

* Consider 7 rolls
* Fix a specific outcome k € |n]
* Let X; = 1 ifthe i-throllis k and X; = 0 otherwise



Coupon Collector

* The total number of rolls withvalue kis X = X; + --- + X,
r

* E[X] =—-=6lognforr = 6nlogn

n
e Recall Chernoff bounds:

PriX<(1-96)u] < exp( 62#)

2

* Pr[X <logn|] <=



Coupon Collector

* Recall we fixed a value k € |n]

1 . . 1
* Pr|X < logn] < — means that with probability at least 1 — —;, we
n n
will at least log n rolls with value k

* Union bound: With probability at least 1 — 1, all outcomes will be

n
rolled at least log n times



End of Probability Unit



Trivia Question #1 (Birthday Paradox)

e Suppose we have a fair n-sided die. “On average”, how many times

should we roll the die before we see a repeated outcome among the
rolls? Example: 1,5, 2,4, 5

* 0(1)
* O(logn)

* O(vn)
* O(n)



Trivia Question #3 (Max Load)

e Suppose we have a fair n-sided die that we roll n times. “On average”,

what is the largest number of times any outcome is rolled? Example:
1,5,2,4,1,3,1forn=7

. (1)
* O(logn)

* O(Vn)
* O(n)



Trivia Question #4 (Coupon Collector)

e Suppose we have a fair n-sided die. “On average”, how many times

should we roll the die before we see all possible outcomes among the
rolls? Example: 1,5,2,4,1,3,1,6forn =6

* O(n)
* O(nlogn)



Dimensionality Reduction

Many images from:
Cameron Musco’s
COMPSCI 514: Algorithms for Data Science



Big Data

* Not only many data points, but also many measurements per data
point, i.e., very high dimensional data



Big Data

* Not only many data points, but also many measurements per data
point, i.e., very high dimensional data

* Twitter has 450 million active monthly users (as of 2022), records
(tens of) thousands of measurements per user: who they follow, who
follows them, when they last visited the site, timestamps for specific
interactions, how many tweets they have sent, the text of those

tweets, etc...



Big Data

* Not only many data points, but also many measurements per data
point, i.e., very high dimensional data

* A 3 minute Youtube clip with a resolution of 500 x 500 pixels at 15
frames/second with 3 color channels is a recording of 2 billion pixel
values. Even a 500 x 500 pixel color image has 750,000 pixel values



Big Data

* Not only many data points, but also many measurements per data
point, i.e., very high dimensional data

* The human genome contains 3 billion+ base pairs. Genetic datasets
often contain information on 100s of thousands+ mutations and
genetic markers



Visualizing Big Data

e Data points are interpreted as high dimensional vectors, with real

. . d
valued entries: x4, ..., x,, ER g

e Dataset is interpreted as
a matrix: X € R™*% with

k-th row x k w1 = 3000 images

LYPY~~~=0000

d = 784 pixels



Dimensionality Reduction

e Dimensionality Reduction: Transform the data points so that they
have much smaller dimension

X1, ., Xn ERE—— 1y, ..., v, ER™  for m«d

% =(0,1,0,0,1,0,1,1) ——y; = (1,2, 1)

* Transformation should still capture the key aspects of x4, ..., x,,



Low Distortion Embedding

* Given x4, ..., X,, € R% a distance function D, and an accuracy
parameter € € |0,1), a low-distortion embedding of x4, ..., x,, is a set
of points y4, ..., y,,, and a distance function D’ such that forall i, €

[n]
(1-— e)D(xl-,xj) < D’(yi,yj) < (1+ e)D(xi,xj)



Euclidean Space

* For z € R%, the £, norm of z is denoted by ||z||, and defined as:

Pythagorean theorem.

Iz]l, = \/212 +z5 4+ + 2] 2(1)

2(2)

VA

Izll, = V2(1)? + z(2)?



Euclidean Space

* For z € R%, the £, norm of z is denoted by ||z||, and defined as:

Pythagorean theorem.

Iz]l, = \/212 +z5 4+ + 2] 2(1)

2(2)

VA

* For x,y € R%, the distance
function D is denoted by ||-||, Izll, = VZ(D? + 2(2)2
and defined as ||x — y||,




Low Distortion Embedding for Euclidean Space

* Given x4, ..., X, € R% and an accuracy parameter € € [0,1), a low-
distortion embedding of x4, ..., x,, is a set of points v, ..., v,, such that
foralli,j € [n]

(I =lxi— x|, < [lyvi —wil, £ A+ )x; — x|,
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Examples: Embeddings for Euclidean Space

* Suppose x4, ..., X, € R% all lie on the 15t- axis

* Take m = 1 and y; to be the first coordinate of x;

0 09 00 °
* Then Hyl- — yf”z = Hxl — xf”z foralli,j € |n]

* Embedding has no distortion
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