CSCE 689: Special Topics in Modern Algorithms for Data Science

Lecture 7

Samson Zhou

Recall: Concentration Inequalities

- Concentration inequalities bound the probability that a random variable is "far away" from its expectation
- Looking at the kth moment for sufficiently high k gives a number of very strong (and useful!) concentration inequalities with exponential tail bounds
- Chernoff bounds, Bernstein's inequality, Hoeffding's inequality, etc.

Recall: Concentration Inequalities

- Suppose we flip a fair coin n = 100 times and let H be the total number of heads
- Markov's inequality: $Pr[H \ge 60] \le 0.833$
- Chebyshev's inequality: $Pr[H \ge 60] \le 0.25$
- 4th moment: $\Pr[H \ge 60] \le 0.186$
- Bernstein's inequality: $Pr[H \ge 60] \le 0.15$
- Truth: $\Pr[H \ge 60] \approx 0.0284$

Last Time: Chernoff Bounds

- Useful variant of Bernstein's inequality when the random variables are binary
- Chernoff bounds: Let $X_1, ..., X_n \in \{0, 1\}$ be independent random variables and let $X = X_1 + \cdots + X_n$ have mean μ . Then for any $\delta \ge 0$:

$$\Pr[|X - \mu| \ge \delta\mu] \le 2\exp\left(-\frac{\delta^2\mu}{2+\delta}\right)$$

Last Time: Median-of-Means Framework

- Suppose we design a randomized algorithm A to estimate a hidden statistic Z of a dataset and we know $0 < Z \leq 1000$.
- Suppose each time we use the algorithm A, it outputs a number X such that E[X] = Z and $Var[X] = 100Z^2$
- Suppose we want to estimate Z to accuracy ε , with probability 1δ
- Accuracy boosting: Repeat A a total of $\frac{10^{12}}{\epsilon^2}$ times and take the mean
- Success boosting: Find the mean a total of $O\left(\log \frac{1}{\delta}\right)$ times and take the median, to be correct with probability 1δ

Last Time: Max Load

- Recall we fixed a value $k \in [n]$
- $\Pr[X \ge 3 \log n] \le \frac{1}{n^2}$ means that with probability at least $1 \frac{1}{n^2}$, we will get fewer than $3 \log n$ rolls with value k
- Union bound: With probability at least $1 \frac{1}{n'}$, no outcome will be rolled more than $3 \log n$ times

Hashing

- Suppose we have a number of files, how do we consistently store them in memory?
- If we hash n items, we require $\Theta(n^2)$ slots to avoid collisions

Dealing with Collisions

• Suppose we store multiple items in the same location as a linked list

- If the maximum number of collisions in a location is *c*, then could traverse a linked list of size *c* for a query
- Query runtime: O(c)

Collisions and Max Load

- With probability at least $1 \frac{1}{n}$, no outcome will be rolled more than $3 \log n$ times
- Worst case query time: $O(\log n)$

Hashing

- For O(1) query time, use $\Theta(n^2)$ slots to avoid collisions
- For $O(\log n)$ query time, use $\Theta(n)$ slots with linked lists

Coupon Collector

- Suppose we have a fair *n*-sided die. "On average", how many times should we roll the die before we see all possible outcomes among the rolls? Example: 1, 5, 2, 4, 1, 3, 1, 6 for n = 6
- Consider *r* rolls
- Fix a specific outcome $k \in [n]$
- Let $X_i = 1$ if the *i*-th roll is *k* and $X_i = 0$ otherwise

Coupon Collector

- The total number of rolls with value k is $X = X_1 + \dots + X_r$
- $E[X] = \frac{r}{n} = 6 \log n$ for $r = 6n \log n$
- Recall Chernoff bounds:

$$\Pr[X \le (1 - \delta)\mu] \le \exp\left(-\frac{\delta^2\mu}{2}\right)$$

• $\Pr[X \le \log n] \le \frac{1}{n^2}$

Coupon Collector

- Recall we fixed a value $k \in [n]$
- $\Pr[X \le \log n] \le \frac{1}{n^2}$ means that with probability at least $1 \frac{1}{n^2}$, we will at least $\log n$ rolls with value k
- Union bound: With probability at least $1 \frac{1}{n}$, all outcomes will be rolled at least $\log n$ times

End of Probability Unit

Trivia Question #1 (Birthday Paradox)

- Suppose we have a fair *n*-sided die. "On average", how many times should we roll the die before we see a repeated outcome among the rolls? Example: 1, 5, 2, 4, 5
- $\Theta(1)$
- $\Theta(\log n)$
- $\Theta(\sqrt{n})$
- **Θ**(*n*)

Trivia Question #3 (Max Load)

- Suppose we have a fair *n*-sided die that we roll *n* times. "On average", what is the largest number of times any outcome is rolled? Example: 1, 5, 2, 4, 1, 3, 1 for *n* = 7
- $\Theta(1)$
- $\widetilde{\Theta}(\log n)$
- $\widetilde{\Theta}(\sqrt{n})$
- $\widetilde{\Theta}(n)$

Trivia Question #4 (Coupon Collector)

- Suppose we have a fair *n*-sided die. "On average", how many times should we roll the die before we see all possible outcomes among the rolls? Example: 1, 5, 2, 4, 1, 3, 1, 6 for n = 6
- **Θ**(*n*)
- $\Theta(n \log n)$
- $\Theta(n\sqrt{n})$
- $\Theta(n^2)$

Dimensionality Reduction

Many images from: Cameron Musco's COMPSCI 514: Algorithms for Data Science

• Not only many data points, but also many measurements per data point, i.e., very high dimensional data

• Not only many data points, but also many measurements per data point, i.e., very high dimensional data

• Twitter has 450 million active monthly users (as of 2022), records (tens of) thousands of measurements per user: who they follow, who follows them, when they last visited the site, timestamps for specific interactions, how many tweets they have sent, the text of those tweets, etc...

• Not only many data points, but also many measurements per data point, i.e., very high dimensional data

• A 3 minute Youtube clip with a resolution of 500 x 500 pixels at 15 frames/second with 3 color channels is a recording of 2 billion pixel values. Even a 500 x 500 pixel color image has 750,000 pixel values

• Not only many data points, but also many measurements per data point, i.e., very high dimensional data

 The human genome contains 3 billion+ base pairs. Genetic datasets often contain information on 100s of thousands+ mutations and genetic markers

Visualizing Big Data

• Data points are interpreted as high dimensional vectors, with real valued entries: $x_1, ..., x_n \in \mathbb{R}^d$

• Dataset is interpreted as a matrix: $X \in \mathbb{R}^{n \times d}$ with *k*-th row x_k

Dimensionality Reduction

• Dimensionality Reduction: Transform the data points so that they have much smaller dimension

$$x_1, \dots, x_n \in \mathbb{R}^d \longrightarrow y_1, \dots, y_n \in \mathbb{R}^m \quad \text{for} \quad m \ll d$$

$$5 \longrightarrow x_i = (0, 1, 0, 0, 1, 0, 1, 1) \longrightarrow y_i = (-1, 2, 1)$$

• Transformation should still capture the key aspects of x_1, \ldots, x_n

Low Distortion Embedding

• Given $x_1, ..., x_n \in \mathbb{R}^d$, a distance function D, and an accuracy parameter $\varepsilon \in [0,1)$, a low-distortion embedding of $x_1, ..., x_n$ is a set of points $y_1, ..., y_n$, and a distance function D' such that for all $i, j \in [n]$

$$(1-\varepsilon)D(x_i,x_j) \le D'(y_i,y_j) \le (1+\varepsilon)D(x_i,x_j)$$

Euclidean Space

• For $z \in \mathbb{R}^d$, the ℓ_2 norm of z is denoted by $||z||_2$ and defined as:

$$||z||_2 = \sqrt{z_1^2 + z_2^2 + \dots + z_d^2}$$

Euclidean Space

• For $z \in \mathbb{R}^d$, the ℓ_2 norm of z is denoted by $||z||_2$ and defined as:

$$||z||_2 = \sqrt{z_1^2 + z_2^2 + \dots + z_d^2}$$

• For $x, y \in \mathbb{R}^d$, the distance function D is denoted by $\|\cdot\|_2$ and defined as $\|x - y\|_2$

Low Distortion Embedding for Euclidean Space

• Given $x_1, \ldots, x_n \in \mathbb{R}^d$ and an accuracy parameter $\varepsilon \in [0,1)$, a low-distortion embedding of x_1, \ldots, x_n is a set of points y_1, \ldots, y_n such that for all $i, j \in [n]$

$$(1 - \varepsilon) \|x_{i} - x_{j}\|_{2} \leq \|y_{i} - y_{j}\|_{2} \leq (1 + \varepsilon) \|x_{i} - x_{j}\|_{2}$$

Examples: Embeddings for Euclidean Space

- Suppose $x_1, \dots, x_n \in \mathbb{R}^d$ all lie on the 1^{st} axis
- Take m = 1 and y_i to be the first coordinate of x_i

• Then
$$\|y_i - y_j\|_2 = \|x_i - x_j\|_2$$
 for all $i, j \in [n]$

• Embedding has no distortion