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Last Time: Johnson-Lindenstrauss Lemma

• Johnson-Lindenstrauss Lemma: Given 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑  and an accuracy 
parameter 휀 ∈ [0,1), there exists a linear map Π: 𝑅𝑑 → 𝑅𝑚 with   

𝑚 = 𝑂
log 𝑛

2  so that if 𝑦𝑖 = Π𝑥𝑖, then for all 𝑖, 𝑗 ∈ [𝑛]:

• Moreover, if each entry of Π is drawn from 
1

𝑚
𝑁(0,1), then Π 

satisfies the guarantee with high probability

1 − 휀 𝑥𝑖 − 𝑥𝑗 2
≤ 𝑦𝑖 − 𝑦𝑗 2

≤ 1 + 휀 𝑥𝑖 − 𝑥𝑗 2



Last Time: Johnson-Lindenstrauss Lemma

• Given 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑  and Π ∈ 𝑅𝑚×𝑑 

with 𝑚 = 𝑂
log 𝑛

2  and each entry 

drawn from 
1

𝑚
𝑁 0,1  and setting 

𝑦𝑖 = Π𝑥𝑖, then with high probability, 
for all 𝑖, 𝑗 ∈ [𝑛]:

• Π is called a random projection

1 − 휀 𝑥𝑖 − 𝑥𝑗 2
≤ 𝑦𝑖 − 𝑦𝑗 2

≤ 1 + 휀 𝑥𝑖 − 𝑥𝑗 2

Π

𝑥𝑖

𝑦𝑖

𝑚 = 𝑂
log 𝑛

2  

𝑅𝑚×𝑑 𝑅𝑑 𝑅𝑚



Last Time: Johnson-Lindenstrauss Lemma

• Johnson-Lindenstrauss Lemma: Given 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑  and Π ∈ 𝑅𝑚×𝑑  

with 𝑚 = 𝑂
log 𝑛

2  and each entry drawn from 
1

𝑚
𝑁 0,1  and setting 

𝑦𝑖 = Π𝑥𝑖, then with high probability, for all 𝑖, 𝑗 ∈ [𝑛]:

• Distributional Johnson-Lindenstrauss Lemma: Given Π ∈ 𝑅𝑚×𝑑 with 

𝑚 = 𝑂
log 1/𝛿

2  and each entry drawn from 
1

𝑚
𝑁 0,1 , then for any 

𝑥 ∈ 𝑅𝑑  and setting 𝑦 = Π𝑥, then with probability at least 1 − 𝛿

1 − 휀 𝑥𝑖 − 𝑥𝑗 2
≤ 𝑦𝑖 − 𝑦𝑗 2

≤ 1 + 휀 𝑥𝑖 − 𝑥𝑗 2

1 − 휀 𝑥 2 ≤ 𝑦 2 ≤ 1 + 휀 𝑥 2



The Streaming Model

• Scenario: We are given a massive dataset that arrives in a continuous 
stream, which we would like to analyze – but we do not have enough 
space to store all the items



The Streaming Model

• Scientific observations: images from telescopes (Event Horizon 
Telescope collected 1 petabyte, i.e., 1024 terabytes, of data from a 
five-day observing campaign), readings from seismometer arrays 
monitoring and predicting earthquake activity



The Streaming Model

• Internet of Things (IoT): home automation (security cameras, smart 
devices), medical care (health monitoring devices, pacemakers), 
traffic cameras and travel time sensors (smart cities), electrical grid 
monitoring



The Streaming Model

• Financial markets 

• Traffic network monitoring



330 billion 
daily e-mails

8.5 billion 
daily Google 
searches

3 billion 
monthly 
active users



The Streaming Model

• Scenario: We are given a massive dataset that arrives in a continuous 
stream, which we would like to analyze – but we do not have enough 
space to store all the items

• Typically the data must be compressed on-the-fly

• Store a data structure from which we can still learn useful information



The Streaming Model

• Input: Elements of an underlying data set 𝑆, which arrive sequentially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑚 of the input 𝑆

1 0 1 1 1 0 0 1





The Streaming Model

• Input: Elements of an underlying data set 𝑆, which arrive sequentially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑚 of the input 𝑆

• Compared to traditional algorithmic design, which focuses on 
minimizing runtime, the big question here is how much space is 
needed to answer queries of interest



Sampling

• Suppose we see a stream of elements from [𝑛]. How do we uniformly 
sample one of the positions of the stream?

47 72 81 10 14 33 51 29 54 9 36 46 10



Sampling

• Suppose we see a stream of elements from [𝑛]. How do we uniformly 
sample one of the positions of the stream?

47 72 81 10 14 33 51 29 54 9 36 46 10



Reservoir Sampling

• Suppose we see a stream of elements from [𝑛]. How do we uniformly 
sample one of the positions of the stream?

• [Vitter 1985]: Initialize 𝑠 =⊥

• On the arrival of element 𝑖, replace 𝑠 with 𝑥𝑖 with probability 
1

𝑖

47 72 81 10 14 33 51 29 54 9 36 46 10



Reservoir Sampling

• Suppose the stream has length 𝑚. What is the probability that 𝑠 = 𝑥𝑡 
for fixed 𝑡 ∈ [𝑚]?

47 72 81 10 14 33 51 29 54 9 36 46 10



Reservoir Sampling

• Suppose the stream has length 𝑚. What is the probability that 𝑠 = 𝑥𝑡 
for fixed 𝑡 ∈ [𝑚]?

• Must have chosen 𝑠 = 𝑥𝑡 at time 𝑡 AND must have never updated 𝑠 
afterwards

47 72 81 10 14 33 51 29 54 9 36 46 10



Reservoir Sampling

• Suppose the stream has length 𝑚. What is the probability that 𝑠 = 𝑥𝑡 
for fixed 𝑡 ∈ [𝑚]?

• Must have chosen 𝑠 = 𝑥𝑡 at time 𝑡 AND must have never updated 𝑠 
afterwards

• Must have chosen 𝑠 = 𝑥𝑡 at time 𝑡 AND did not update 𝑠 at time 𝑡 +
1 AND did not update 𝑠 at time 𝑡 + 2 AND did not update 𝑠 at time 
𝑡 + 3 AND … AND did not update 𝑠 at time 𝑚



Reservoir Sampling

• Must have chosen 𝑠 = 𝑥𝑡 at time 𝑡 

• AND did not update 𝑠 at time 𝑡 + 1 

• AND did not update 𝑠 at time 𝑡 + 2 

• AND did not update 𝑠 at time 𝑡 + 3 

• AND … 

• AND did not update 𝑠 at time 𝑚



Reservoir Sampling

• Must have chosen 𝑠 = 𝑥𝑡 at time 𝑡 

• AND did not update 𝑠 at time 𝑡 + 1 

• AND did not update 𝑠 at time 𝑡 + 2 

• AND did not update 𝑠 at time 𝑡 + 3 

• AND … 

• AND did not update 𝑠 at time 𝑚
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1
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Reservoir Sampling
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Reservoir Sampling

• Must have chosen 𝑠 = 𝑥𝑡 at time 𝑡 

• AND did not update 𝑠 at time 𝑡 + 1 

• AND did not update 𝑠 at time 𝑡 + 2 

• AND did not update 𝑠 at time 𝑡 + 3 

• AND … 

• AND did not update 𝑠 at time 𝑚

Happens with 

probability 
1

𝑡

Happens with 

probability 1 −
1

𝑡+1

Happens with 

probability 1 −
1

𝑡+2

Happens with 

probability 1 −
1

𝑚Pr 𝑠 = 𝑥𝑡 =
1

𝑡
×

𝑡

𝑡 + 1
×

𝑡 + 1

𝑡 + 2
× ⋯ ×

𝑚 − 1

𝑚
=

1

𝑚



Frequency Vector

• Given a set 𝑆 of 𝑚 elements from [𝑛], let 𝑓𝑖 be the frequency of 
element 𝑖. (How often it appears)

1 1 2 1 2 1 1 2 3  5, 3, 1, 0 ≔ 𝑓



Frequent Items

• Given a set 𝑆 of 𝑚 elements from [𝑛], let 𝑓𝑖 be the frequency of 
element 𝑖. (How often it appears)

• Goal: Given a set 𝑆 of 𝑚 elements from [𝑛] that induces a 
frequency vector 𝑓, find the “large” coordinates of 𝑓

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 

10 0 1 1 2 0 9



Frequent Items

• Data mining: Finding top products/viral objects, e.g., Google 
searches, Amazon products, YouTube videos, etc.

• Traffic network monitoring: Finding IP addresses with high volume 
traffic, e.g., detecting distributed denial of service (DDoS) attacks, 
network anomalies) 

• Database design: Finding iceberg queries, i.e., items in a database 
with high volume of queries

• Want fast response and running list of frequent items, i.e., cannot 
process entire database for each query/update



Frequent Items

• Goal: Given a set 𝑆 of 𝑚 elements from [𝑛] and a parameter 𝑘, 
output the 𝑘 elements 𝑖 with the largest frequency 𝑓𝑖

• Return the 𝑘 elements with the largest frequency

• Natural approach: store the count for each item and return the 𝑘 
elements with the largest frequency

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 

10 0 1 1 2 0 9



Frequent Items

• Goal: Given a set 𝑆 of 𝑚 elements from [𝑛] and a parameter 𝑘, 
output the 𝑘 elements 𝑖 with the largest frequency 𝑓𝑖

• Return the 𝑘 elements with the largest frequency

• Natural approach: store the count for each item and return the 𝑘 
elements with the largest frequency, uses 𝑂(𝑛) space 

•  MUST USE LINEAR SPACE

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 

10 0 1 1 2 0 9



Frequent Items

• Goal: Given a set 𝑆 of 𝑚 elements from [𝑛] and a parameter 𝑘, 
output the items from [𝑛] that have frequency at least 

𝑚

𝑘

• How many items can be returned? At most 𝑘 coordinates with 
frequency at least 

𝑚

𝑘

• For 𝑘 = 20, want items that are at least 5% of the stream

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 

10 0 1 1 2 0 9



Frequent Items

• Goal: Given a set 𝑆 of 𝑚 elements from [𝑛] and a parameter 𝑘 = 2, 
output the items from [𝑛] that have frequency at least 

𝑚

2

• Find the item that forms the majority of the stream
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Majority

• Goal: Given a set 𝑆 = {𝑥1, … , 𝑥𝑚} of 𝑚 elements from [𝑛] and a 
parameter 𝑘 = 2, output the items from [𝑛] that have frequency at 
least 

𝑚

2

• Initialize item 𝑉 = 1 with count 𝑐 = 0

• For updates 1, … , 𝑚:

• If 𝑐 = 0, set 𝑉 = 𝑥𝑖

• Else if 𝑉 = 𝑥𝑖, increment counter 𝑐 by setting 𝑐 = 𝑐 + 1

• Else if 𝑉 ≠ 𝑥𝑖, decrement counter 𝑐 by setting 𝑐 = 𝑐 − 1



Majority

• Initialize item 𝑉 = 1 with count 𝑐 = 0

• For updates 1, … , 𝑚:

• If 𝑐 = 0, set 𝑉 = 𝑥𝑖 and 𝑐 = 1

• Else if 𝑉 = 𝑥𝑖, increment counter 𝑐 by setting 𝑐 = 𝑐 + 1

• Else if 𝑉 ≠ 𝑥𝑖, decrement counter 𝑐 by setting 𝑐 = 𝑐 − 1

• Let 𝑀 be the true majority element

• Let 𝑧 be a helper variable with 𝑧 = +1 when 𝑥𝑖 = 𝑀 and 𝑧 = −1 
when 𝑥𝑖 ≠ 𝑀 



Majority

• Let 𝑀 be the true majority element

• Let 𝑧 be a helper variable with 𝑧 = +1 when 𝑉 = 𝑀 and 𝑧 = −1 
when 𝑉 ≠ 𝑀 

• Since 𝑀 is the majority, then 𝑧 is positive at the end of the stream, 
so algorithm ends with 𝑉 = 𝑀

• 𝑂 log 𝑚 + log 𝑛  bits of space

• 𝑂 log 𝑛  bits of space for 𝑚 ≤ 𝑛𝛼 for fixed constant 𝛼

• For simplicity, let’s assume 𝑚 = Θ(𝑛)
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