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Intro to Submodular Function and 
Fairness Problem



Submodularity

• A discrete function   is submodular if , and 
, it holds


•                            


•                               (Diminishing return property)


• Denote , then 

f : 2U → ℝ ∀A ⊆ B ⊆ U
∀i ∈ U/B

f(A ∪ {i}) − f(A) ≥ f(B ∪ {i}) − f(B)

Δf(A, i) = f(A ∪ i) − f(A) Δf(A, i) ≥ Δf(B, i)



Submodularity

• submodular functions


•           


•            Proof: 

f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B)



What is fairness

• Definition: 

• Fairness ensures that individuals from different backgrounds and groups 
receive unbiased decision-making.


• In the realm of algorithms, fairness involves data processing and decision-
making output that is fair and non-discriminatory to all users.



What is fairness

• Key points: 

• Statistical equality, error rate balance, and equality of opportunity are key 
measures of algorithmic fairness.


• Challenges: 

• Including dealing with unbalanced data, correcting historical biases and 
ensuring group representation.



Motivation:  Why study fairness

• Background:  


• As algorithmic decision tools proliferate in society, their influence in 
sensitive areas is also growing.


• Social impact of the algorithm: 

• Potential for bias and discrimination in automated decision especially in 
sensitive domains: voting, hiring, criminal justice, access to credit, etc.



Motivation:  Why study fairness

• The Law and Ethics of fairness and research evaluation: 

• 1. Public expectations and legal requirements.


• 2. Enhance the fairness and trust of decision systems.



Fairness definition and constraint

• The necessity of fairness: 

• Fairness is introduced into the algorithm to ensure that all groups are 
represented fairly.


• Define lower and upper bounds: 

• Lower bound  ensure minimum representation of each group and the 
upper bound  prevents over-representation.

lc
uc



Fairness definition and constraint

• Example of fairness constraints: 

• In the recruitment process, the lower and upper bounds of gender or race 
representation are set according to the proportion of the applicant group.



Practical application of fairness constraints

• How can we avoid exacerbating social inequality when relying on data-driven 
decision-making?


• Group—> unfairly represented —> socio-economic opportunities unequal


• Ensure groups get a fair shot in automated decision-making: credit 
approval, hiring, education or health diagnostics.


• How to set upper and lower bound


• For example: if a group is 30% of the overall population, that group should 
be at least 30% (lower bound), Higher will lead to over-representation.



Submodular Optimization Problem with 
Fairness



Fairness Set Up

• Assume the ground set  is colored so and each element has exactly one 
color. Index color by  and denote by  the set of the elements 
of color . 


• Thus, we have partition .


• Denote by  the set of solutions feasible under the fairness and cardinality 
constraints, i.e.


• , where  and  are 
the lower bound and upper bound on the number of elements with color 

V
c = 1,2,⋯, C Vc

c

V = V1 ∩ V2 ∩ ⋯ ∩ VC

ℱ

ℱ = {S ⊆ V : |S | ≤ k, |S ∩ Vc | ∈ [lc, uc]∀c ∈ [C]} lc uc
c



Submodular Maximization under Fairness
• The problem of submodular maximization under fairness constraint is 

therefore formulated as


•              


• s.t.            


•          

max
S∈E

f(S)

lc ≤ |S ∩ Vc | ≤ uc ∀c ∈ [C]

|S | ≤ k



Extendable Set

• Definition 1  is extendable if it is a subset  of some feasible 
solution .  

• Lemma 1 A set  is extendable if and only if 


•  for all   and 

S ⊆ V S ⊆ S′￼

S′￼ ∈ ℱ

S ⊆ V

|S ∩ Vc | ≤ uc c = 1,⋯, C
C

∑
c=1

max( |S ∩ Vc | , lc) ≤ k .



Extendable Sets: Results

• Lemma 2. If  is monotone, then SM under fairness constraint is equivalent to 
SM under extendable sets constraint


• Lemma 3 If  is the collection of all the extendable sets in the ground set , 
then  is a matroid.


• Therefore, the problem is equivalent to SM under matroid constraint.

f

ℐ V
(V, ℐ)



• Definition 2  A matroid is a pair  where  is a finite set (called ground 
set) and  is a family of subsets of  (called the independent sets) with the 
following properties:


• 1. The empty set is in , I.e., 


• 2. For any subset , if , and B is a subset of A, then .
(downward property)


• 3. If  and  are are two independent sets and , then there 
exists  such that .

(E, ℳ) E
ℳ E

ℳ ∅ ∈ ℳ

A, B A ∈ ℳ B ∈ ℳ

A B |A | > |B |
x ∈ A\B B ∪ {x} ∈ ℳ

Matroid



• The problem of submodular maximization under fairness is thus equivalent to:


•                           


•    s.t.                , where  is the collection of all the extendable sets


• Thus, by applying a greedy algorithm, we can obtain a  approximation 
(best known result), i.e. .

max
S⊆U

f(S)

S ∈ ℐ ℐ

1/2
f(S) ≥ 1/2 OPT

Submodular Maximization Problem with Fairness



Submodular Cover Problem



Submodular Cover: Cardinality constraint

• (Submodular Cover)


•               


•   s.t.     

min
S⊆U

|S |

f(S) ≥ τ

• (Submodular Maximization)


•               


•   s.t.     


max
S⊆U

f(S)

|S | ≤ k



Submodular Cover: Fairness Constraint

• (Submodular Cover)


•               


•   s.t.     

min
S⊆U

|S |

f(S) ≥ τ

• (Submodular Maximization)


•             


•   s.t.     


•           , 


max
S⊆U

f(S)

|S | ≤ k

lc ≤ |S ∩ Vc | ≤ uc ∀c ∈ [C]

SC under fairness constraint?        Proportional to|S ∩ Vc | |S |



Submodular Cost Submodular Cover with Fairness

• In this project, we consider submodular cover with fairness constraint


• Objective: minimize the cardinality


• Constraint: (1).  should be proportional to  ; (2).  .|S ∩ Vc | |S | f(S) ≥ τ



Submodular Cost Submodular Cover with Fairness

• The fairness constraint is:


• , 


•   ,  are the lower bound and upper bound on the proportion of the 
number of elements in group 

ℱ = {S ⊆ V : lc |S | ≤ |S ∩ Vc | ≤ uc |S | , ∀c ∈ [C]}

lc uc
c



Submodular Cost Submodular Cover with Fairness

• Therefore, the problem as following is considered:


• (Submodular Cost Submodular Cover with Fairness)


•                                  


•                      s.t.     


•                                

min
S⊆U

|S |

lc |S | ≤ |S ∩ Vc | ≤ uc |S | , ∀c ∈ [C]

f(S) ≥ τ



Proposed Algorithms and Main Results



Intuition of algs

• The problem of Submodular Cover is a dual problem of Submodular 
Maximization

• (Submodular Maximization)


•           


•  s.t.  , 


•          

max
S⊆U

f(S)

lc ≤ |S ∩ Vc | ≤ uc ∀c ∈ [C]

|S | ≤ k

• (Submodular Cover)


•           


• s.t. , 


•       

min
S⊆U

|S |

lc |S | ≤ |S ∩ Vc | ≤ uc |S | ∀c ∈ [C]

f(S) ≥ τ

• Greedy for SM achieves 1/2 approximation ratio. If we know |OPT|, then we can use 
alg for SM as subroutine.



Algorithm 1

 is the current solution,  is the optimal solutionS O

Greedy



Theoretical Results for Algorithm 1

• Theorem 1.  Algorithm 1 produces a solution with -bicrateria 
approximation in at most  queries of .


• Comments on Theorem 1:


• -bicriteria approximation:    

(1/ϵ,1 − ϵ)
O(n |OPT | /ϵ) f

(1/ϵ, ϵ) f(S) ≥ (1 − ϵ)τ, and |S | ≤ |OPT | /ϵ



Algorithm 2

 is the current solution,  is the ground set,  is the guess of the size of the 
optimal solution and  is the fixed threshold.
S V g

τ



Theoretical Results for Algorithm 2

• Theorem 2 Algorithm 2 produces a solution with 
-bicrateria approximation in at most  queries of .


• Comments on Theorem 2:


• -bicriteria approximation:



• Needs at most  rounds of guesses, where  is the size of the ground 
set 

((1 + α)/ϵ,1 − ϵ)
O(n |OPT | log |OPT | /ϵ) f

((1 + α)/ϵ,1 − ϵ)
f(S) ≥ (1 − ϵ)τ, and |S | ≤ (1 + α) |OPT | /ϵ

log n n
V



Thank You！


