Submodular Cost Submodular Cover with Fairness.

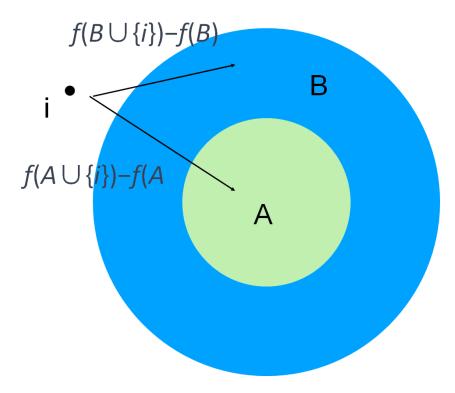
Wenjing Chen, Zhitong Chen, and Shuo Xing

Intro to Submodular Function and Fairness Problem

Submodularity

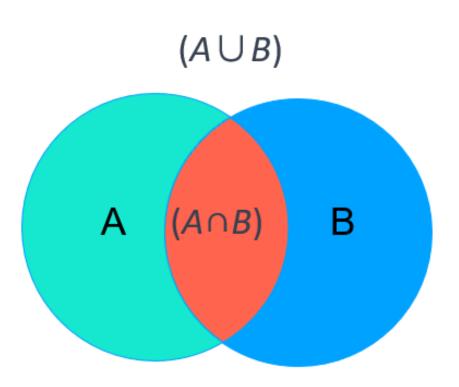
- A discrete function $f: 2^U \to \mathbb{R}$ is submodular if $\forall A \subseteq B \subseteq U$, and $\forall i \in U/B$, it holds
 - $f(A \cup \{i\}) f(A)$
 - (Diminishing return property)
- Denote $\Delta f(A, i) = f(A \cup i) f(A)$, then $\Delta f(A, i) \ge \Delta f(B, i)$

$$\geq f(B \cup \{i\}) - f(B)$$



Submodularity

- submodular functions
- $f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$
- Proof:



What is fairness

Definition:

- receive unbiased decision-making.
- making output that is fair and non-discriminatory to all users.

Fairness ensures that individuals from different backgrounds and groups

In the realm of algorithms, fairness involves data processing and decision-

What is fairness

- Key points:
 - measures of algorithmic fairness.
- Challenges:
 - ensuring group representation.

Statistical equality, error rate balance, and equality of opportunity are key

Including dealing with unbalanced data, correcting historical biases and

Motivation: Why study fairness

- **Background:**
 - As algorithmic decision tools proliferate in society, their influence in sensitive areas is also growing.
- Social impact of the algorithm:

 Potential for bias and discrimination in automated decision especially in sensitive domains: voting, hiring, criminal justice, access to credit, etc.

Motivation: Why study fairness

- The Law and Ethics of fairness and research evaluation:
 - 1. Public expectations and legal requirements.
 - 2. Enhance the fairness and trust of decision systems.

Fairness definition and constraint

The necessity of fairness:

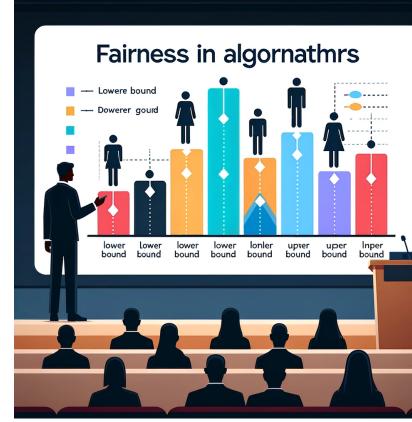
- represented fairly.
- **Define lower and upper bounds:**
 - upper bound u_c prevents over-representation.

• Fairness is introduced into the algorithm to ensure that all groups are

• Lower bound l_c ensure minimum representation of each group and the

Fairness definition and constraint

• Example of fairness constraints:



 In the recruitment process, the lower and upper bounds of gender or race representation are set according to the proportion of the applicant group.

Practical application of fairness constraints

- How can we avoid exacerbating social inequality when relying on data-driven decision-making?
 - Group —> unfairly represented —> socio-economic opportunities unequal
 - Ensure groups get a fair shot in automated decision-making: credit approval, hiring, education or health diagnostics.
- How to set upper and lower bound
 - For example: if a group is 30% of the overall population, that group should be at least 30% (lower bound), Higher will lead to over-representation.

Submodular Optimization Problem with Fairness

Fairness Set Up

- Assume the ground set V is colored so and each element has exactly one color. Index color by $c = 1, 2, \dots, C$ and denote by V_c the set of the elements of color c.
- Thus, we have partition $V = V_1 \cap V_2$
- Denote by ${\mathscr F}$ the set of solutions feasible under the fairness and cardinality constraints, i.e.
 - $\mathscr{F} = \{S \subseteq V : |S| \le k, |S \cap V_c| \in [l_c, u_c] \forall c \in [C]\}$, where l_c and u_c are the lower bound and upper bound on the number of elements with color c

$$V_2 \cap \cdots \cap V_C$$
.

Submodular Maximization under Fairness

- The problem of submodular maximization under fairness constraint is therefore formulated as
 - $\max_{S \in E} f(S)$

 - $|S| \leq k$

• s.t. $l_c \leq |S \cap V_c| \leq u_c \quad \forall c \in [C]$

Extendable Set

- **Definition 1** $S \subseteq V$ is extendable if solution $S' \in \mathcal{F}$.
- Lemma 1 A set $S \subseteq V$ is extendable if and only if
 - $|S \cap V_c| \le u_c$ for all $c = 1, \dots, C$

• **Definition 1** $S \subseteq V$ is extendable if it is a subset $S \subseteq S'$ of some feasible

C and
$$\sum_{c=1}^{C} \max(|S \cap V_c|, l_c) \le k$$
.

Extendable Sets: Results

- SM under extendable sets constraint
- then (V, \mathscr{I}) is a matroid.
- Therefore, the problem is equivalent to SM under matroid constraint.

• Lemma 2. If f is monotone, then SM under fairness constraint is equivalent to

• Lemma 3 If \mathscr{I} is the collection of all the extendable sets in the ground set V,

Matroid

- following properties:
 - 1. The empty set is in \mathcal{M} , I.e., $\emptyset \in \mathcal{M}$
 - (downward property)
 - exists $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{M}$.

• **Definition 2** A matroid is a pair (E, \mathcal{M}) where E is a finite set (called ground set) and \mathcal{M} is a family of subsets of E (called the independent sets) with the

• 2. For any subset A, B, if $A \in \mathcal{M}$, and B is a subset of A, then $B \in \mathcal{M}$.

• 3. If A and B are are two independent sets and |A| > |B|, then there

Submodular Maximization Problem with Fairness

 $\max f(S)$ $S \subset U$

- s.t.
- (best known result), i.e. $f(S) \ge 1/2 \ OPT$.

The problem of submodular maximization under fairness is thus equivalent to:

 $S \in \mathcal{I}$, where \mathcal{I} is the collection of all the extendable sets

• Thus, by applying a greedy algorithm, we can obtain a 1/2 approximation

Submodular Cover Problem

Submodular Cover: Cardinality constraint

- (Submodular Maximization)
 - s.t. $|S| \le k$

- (Submodular Cover)
 - $\min_{S \subseteq U} |S|$
 - s.t. $f(S) \ge \tau$

Submodular Cover: Fairness Constraint

• (Submodular Maximization)

• $\max_{S \subseteq U} f(S)$

- s.t. $|S| \leq k$
- $l_c \leq |S \cap V_c| \leq u_c, \forall c \in [C]$

SC under fairness constraint?

- (Submodular Cover)
 - $\min_{S \subseteq U} |S|$
 - s.t. $f(S) \ge \tau$

$|S \cap V_c|$ Proportional to |S|

Submodular Cost Submodular Cover with Fairness

- In this project, we consider submodular cover with fairness constraint \bullet
 - Objective: minimize the cardinality
 - Constraint: (1). $|S \cap V_c|$ should be proportional to |S|; (2). $f(S) \ge \tau$.

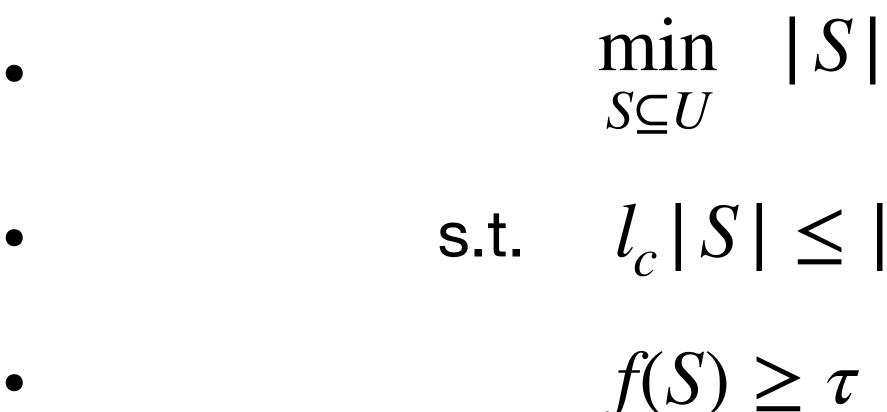
Submodular Cost Submodular Cover with Fairness

- The fairness constraint is:
- $\mathscr{F} = \{S \subseteq V : l_c | S | \le |S \cap V_c| \le u_c | S |, \forall c \in [C]\},\$
- number of elements in group *C*

• l_c , u_c are the lower bound and upper bound on the proportion of the

Submodular Cost Submodular Cover with Fairness

- Therefore, the problem as following is considered:
 - (Submodular Cost Submodular Cover with Fairness)



- s.t. $l_c |S| \le |S \cap V_c| \le u_c |S|, \forall c \in [C]$

Proposed Algorithms and Main Results

Intuition of algs

- The problem of Submodular Cover is a dual problem of Submodular Maximization
- (Submodular Maximization)

$$\max_{S \subseteq U} f(S)$$

• s.t. $l_c \leq |S \cap V_c| \leq u_c$, $\forall c \in [C]$

$$|S| \leq k$$

• Greedy for SM achieves 1/2 approximation ratio. If we know [OPT], then we can use alg for SM as subroutine.

• (Submodular Cover)

 $\min_{S \subseteq U} |S|$

- s.t. $l_c |S| \le |S \cap V_c| \le u_c |S|, \forall c \in [C]$
- $f(S) \geq \tau$ \bullet

Algorithm 1

Algorithm 1 greedy-fairness-known-OPT

- 1: Input: ϵ
- 2: Output: $S \in V$
- 3: $S \leftarrow \emptyset$

O is the optimal solution

- 5: while $|S| < |O|/\epsilon$ do
- $U \leftarrow \{x \in U | S \cup \{x\} \in \mathcal{I}'\}$ 6:
- 7: $u \leftarrow \operatorname{argmax}_{x \in U} \Delta f(S, x) \leftarrow \operatorname{Greedy}$
- $S \leftarrow S \cup \{u\}$ 8: return S

S is the current solution, O is the optimal solution

4: $\mathcal{I}' \leftarrow \{S \subseteq V : |S \cap V_c| \le u_c/\epsilon \cdot |O|, \forall c \in [C] \text{ and } \sum_{c=1}^C \max(|S \cap V_c|, l_c/\epsilon \cdot |O|) \le |O|/\epsilon\}, \text{ where } I$

Theoretical Results for Algorithm 1

- approximation in at most $O(n | OPT | / \epsilon)$ queries of *f*.
- Comments on *Theorem 1*:

• **Theorem 1.** Algorithm 1 produces a solution with $(1/\epsilon, 1 - \epsilon)$ -bicrateria

• $(1/\epsilon, \epsilon)$ -bicriteria approximation: $f(S) \ge (1 - \epsilon)\tau$, and $|S| \le |OPT|/\epsilon$

Algorithm 2

Algorithm 2 greedy-fairness-by-guesses

- 1: Input: ϵ and α
- 2: Output: $S \in V$
- 3: $g \leftarrow 1 + \alpha$
- 4: while $f(S) \leq (1 \epsilon)\tau \operatorname{do}$
- 5: $S \leftarrow \emptyset$
- 6:
- while $|S| < g/\epsilon$ do 7:
- $U \leftarrow \{x \in U | S \cup \{x\} \in \mathcal{I}'_a\}$ 8:
- $u \leftarrow \operatorname{argmax}_{x \in U} \Delta f(S, x)$ 9:
- $S \leftarrow S \cup \{u\}$ 10:

 $g \leftarrow (1 + \alpha)g$ 11:return S

S is the current solution, V is the ground set, g is the guess of the size of the optimal solution and τ is the fixed threshold.

$\mathcal{I}'_q \leftarrow \{S \subseteq V : |S \cap V_c| \le u_c/\epsilon \cdot g, \forall c \in [C] \text{ and } \sum_{c=1}^C \max(|S \cap V_c|, l_c/\epsilon \cdot g) \le g/\epsilon\}$

Theoretical Results for Algorithm 2

- **Theorem 2** Algorithm 2 produces a solution with $((1 + \alpha)/\epsilon, 1 \epsilon)$ -bicrateria approximation in at most $O(n | OPT | \log | OPT | /\epsilon)$ queries of *f*.
- Comments on *Theorem 2*:
 - $((1 + \alpha)/\epsilon, 1 \epsilon)$ -bicriteria approximation: $f(S) \ge (1 - \epsilon)\tau$, and $|S| \le (1 + \alpha)|OPT|/\epsilon$
 - Needs at most $\log n$ rounds of guesses, where n is the size of the ground set V

