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Intro to Submodular Function and
Fairness Problem



Submodularity

» A discrete function | : 2Y 5 R is submodular if VA C B C U, and
Vi U/B, It holds ABU)-f

fAU (i) = flA) = fBU (i}) —f(B) o

(Diminishing return property)

» Denote Af(A,1) = f(AU1i)—f(A), then Af(A,1) > Af(B,1)




Submodularity

e submodular functions

fA) +(B) 2 (AU B) + (AN B)

Proof:

(AUB)




What i1s fairness

e Definition:

* Fairness ensures that individuals from different backgrounds and groups
receive unbiased decision-making.

* |n the realm of algorithms, fairness involves data processing and decision-
making output that is fair and non-discriminatory to all users.



What i1s fairness

 Key points:

o Statistical equality, error rate balance, and equality of opportunity are key
measures of algorithmic fairness.

 Challenges:

* |Including dealing with unbalanced data, correcting historical biases and
ensuring group representation.



Motivation: Why study fairness

 Background:

* As algorithmic decision tools proliferate in society, their influence in
sensitive areas Is also growing.

* Social impact of the algorithm:

* Potential for bias and discrimination in automated decision especially in
sensitive domains: voting, hiring, criminal justice, access to credit, etc.



Motivation: Why study fairness

e The Law and Ethics of fairness and research evaluation:
* 1. Public expectations and legal requirements.

e 2. Enhance the fairness and trust of decision systems.



Fairness definition and constraint m

* The necessity of fairness:

* Fairness is introduced into the algorithm to ensure that all groups are
represented fairly.

 Define lower and upper bounds:

 Lower bound /. ensure minimum representation of each group and the
upper bound u . prevents over-representation.



Fairness definition and constraint

Fairness in algornatmrs
® "

« Example of fairness constraints:

* |n the recruitment process, the lower and upper bounds of gender or race
representation are set according to the proportion of the applicant group.



Practical application of fairness constraints

« How can we avoid exacerbating social inequality when relying on data-driven
decision-making?

 Group—> unfairly represented —> socio-economic opportunities unequal

* Ensure groups get a fair shot in automated decision-making: credit
approval, hiring, education or health diagnostics.

« How to set upper and lower bound

 For example: if a group is 30% of the overall population, that group should
be at least 30% (lower bound), Higher will lead to over-representation.



Submodular Optimization Problem with
Fairness



Fairness Set Up

« Assume the ground set V' is colored so and each element has exactly one

color. Index color by ¢ = 1,2,---, C and denote by V. the set of the elements
of color c.

 Thus, we have partition V=V, nV,Nn---NV.

» Denote by # the set of solutions feasible under the fairness and cardinality
constraints, I.e.

« F={SCV: S|k |ISNV.|€ll,ulVce][C]}, wherel. and u,.are
the lower bound and upper bound on the number of elements with color ¢



Submodular Maximization under Fairness

 The problem of submodular maximization under fairness constraint is
therefore formulated as

max f(5)
SEE

e st. [.Z|SNV.|Zu  Vce|(]

| S| <k



Extendable Set

o Definition 1.5 C V is extendable if it is a subset S C S’ of some feasible
solution S’ € &.

« Lemma 1 Aset S C Vis extendable if and only if

C
SNV, <u.forallc=1,--,C and Zmax(lSﬂ V.I|,l) < k.

c=1



Extendable Sets: Results

» Lemma 2. If f is monotone, then SM under fairness constraint is equivalent to
SM under extendable sets constraint

« Lemma 3 If .¥ is the collection of all the extendable sets in the ground set V/,
then (V, %) is a matroid.

* Therefore, the problem is equivalent to SM under matroid constraint.



Matroid

» Definition 2 A matroid is a pair (E, /Z ) where E is a finite set (called ground

set) and . is a family of subsets of E (called the independent sets) with the
following properties:

e 1. The empty setisin ., l.e., & € M

e 2. Forany subsetA,B,ifA € /4, and B is a subset of A, then B € /.
(downward property)

 3.If A and B are are two independent sets and |A| > | B|, then there
exists x € A\B suchthat BU {x} € /.



Submodular Maximization Problem with Fairness

* The problem of submodular maximization under fairness is thus equivalent to:

. max f(5)
SCU
¢ s.t. S € F, where ¥ is the collection of all the extendable sets

« Thus, by applying a greedy algorithm, we can obtain a 1/2 approximation
(best known result), i.e. f(S) > 1/2 OPT.



Submodular Cover Problem



Submodular Cover: Cardinality constraint

e (Submodular Maximization) e (Submodular Cover)
max F(S) : min | S|
SCU SCU

st. |S| <k « st (S >1



Submodular Cover: Fairness Constraint

e (Submodular Maximization) e (Submodular Cover)
max f(5) . min |5

SCU SCU
st. 3=k . st f(S) 27

[.Z|SNV.|<Lu., Vce|C]

SC under fairness constraint? | S N V.| Proportional to | S|



Submodular Cost Submodular Cover with Fairness

* |n this project, we consider submodular cover with fairness constraint

e Objective: minimize the cardinality

» Constraint: (1). |S N V.| should be proportional to | S| ; 2). f(S) > 7.



Submodular Cost Submodular Cover with Fairness

e The fairness constraint is:
c F={SCV:L|S|LISNV.|<u.lS|,Vce[C]}

» [.,u.arethe lower bound and upper bound on the proportion of the
number of elements in group ¢



Submodular Cost Submodular Cover with Fairness

* Therefore, the problem as following is considered:

e (Submodular Cost Submodular Cover with Fairness)

. min |S|
SCU
. st. L|S|Z[ISNV. | <L u.|S|,Vee|[C]

. f(S) >



Proposed Algorithms and Main Results



Intuition of algs

* The problem of Submodular Cover is a dual problem of Submodular
Maximization

e (Submodular Maximization) * (Submodular Cover)
SCU SCU

e st.l.LZ|SNV.|<Lu.,VcelC] e s.t. LS| LZ|SNV. | Zfu.|S|, Ve e|[C]

. S| <k . S >7

e Greedy for SM achieves 1/2 approximation ratio. If we know |OPT]|, then we can use
alg for SM as subroutine.



Algorithm 1

Algorithm 1 greedy-fairness-known-0PT

. Input: €
. OQutput: SV
. S0
T+ {SCV:|8NV,| <wucle-|0|,Ve e [C] and 3¢, max(|SNV.|,l./e-|O]) < |O|/e}, where
O is the optimal solution
while |S| < |O|/e do
U+ {xeU|lSu{z} e}
u — argmax .y Af(S, ) Greedy
S+ Su{u}

return S

-0 N =

Y is the current solution, O is the optimal solution



Theoretical Results for Algorithm 1

 Theorem 1. Algorithm 1 produces a solution with (1/¢,1 — €)-bicrateria
approximation in at most O(n | OPT |/€) queries of f.

e Comments on Theorem 1;

 (1/€, €)-bicriteria approximation: f(S) > (1 —e)r, and |S| < |OPT|/¢



Algorithm 2

Algorithm 2 greedy-fairness-by-guesses

1: Input: € and «
2: Output: SV

3: g+ 1+«
4: while f(S) < (1 —¢€)7 do
D: S+ 0
6: L, «{SCV:|SNV|<uc/e-g,Vce|[C]and S¢  max(|SNV,,l./e-g) < g/€}
7 whlle S| < g/e do
8: U<+ {zecU|Su{z} eI}
9: u < argmax, .y Af(S, )
10: S+ SU{u}
11: S;l—l— a)g
return

S is the current solution, V' is the ground set, g is the guess of the size of the
optimal solution and 7 is the fixed threshold.



Theoretical Results for Algorithm 2

« Theorem 2 Algorithm 2 produces a solution with ((1 + a)le,]l — 6)
-bicrateria approximation in at most O(n | OPT |log | OPT|/€) queries of f.

e Comments on Theorem 2;

. ((1 + a)/e,]l — 6)—bicriteria approximation:
fS)>2—-e)r,and | S| < (1 +a)|OPT|/e

» Needs at most log n rounds of guesses, where 7 is the size of the ground
set V



Thank You!



