CSCE 689: Special Topics in Modern Algorithms for Data Science Fall 2023
Lecture 10 - September 13, 2023
Prof. Samson Zhou
Scribe: Zhitong Chen

Frequent Items

- Goal: Given a set S of m elements from $[n]$ and a parameter k, output the items from $[n]$ that have frequency at least $\frac{m}{k}$.
- How many items can be returned?

The Answer is: at most k coordinates with frequency at least $\frac{m}{k}$. Why? Assuming that more items are returned than k, then the frequency of each item is at least $\frac{m}{k}$, which means that the total number of elements will be more than m, which contradicts the fact that we only have m elements.

- For $k=20$, want items that are at least 5% of the stream.

The Answer is: First, consider that we are looking for items with a frequency of at least $\frac{m}{k}$, and when $k=20$, we are looking for items with a frequency of at least $\frac{m}{20}$. Converting this frequency to a percentage: $\frac{(m / 20)}{m}$. Simplifying this expression, we get $\frac{1}{20}$, which is 5%, so for $k=20$, we want to find those items that make up at least 5% of the data stream.

Majority

- Goal: Given a set S of m elements from $[n]$ and a parameter $k=2$, output the items from $[n]$ that have frequency at least $\frac{m}{2}$.

Explanation: When you have a set S containing m elements and they come from $[n]$ (which might be a larger range or set), and given the parameter $k=2$, the goal is to find those terms that have a frequency of at least $\frac{m}{2}$ among those m elements. Since k has been defined as 2 , we would like to find terms that occur at least half as often as the whole stream.

- Find the item that forms the majority of the stream

Algorithm (Boyer-Moore majority vote algorithm): Initialize item $V=\perp$ with count $c=0$. For updates $i=1, \ldots, m$: If $c=0$, set $V=x_{i}$ and $c=1$. Otherwise if $V=x_{i}$, increment c. Otherwise if $V \neq x_{i}$ and $c>0$, decrement c.

Intuition: Initialize $V=\perp$ and counter $c=0$. If x_{1} is not the majority item, it must be deleted at some time T. At time T, the stream will have consumed $\frac{T}{2}$ instances of x_{1}, so that the majority item of the stream must have only appeared at most $\frac{T}{2}$ times. Thus of the remaining $\frac{m}{2}-\frac{T}{2}$ updates, the majority item of the entire stream remains the majority over the rest of the stream.

Misra-Gries Algorithm

- Goal: Given a set S of m elements from $[n]$ and a parameter k, output the items from $[n]$ that have frequency at least $\frac{m}{k}$.

Algorithm: Initialize k items V_{1}, \ldots, V_{k} with count $c_{1}, \ldots, c_{k}=0$. For updates $i=1, \ldots, m$: If $V_{t}=x_{i}$ for some t, increase counter c_{t} by setting $c_{t}=c_{t}+1$. Else if $c_{t}=0$ for some t, set $V_{t}=x_{i}$. Else decrease all counters $c_{t}=c_{t}-1$.

Claim: At the end of the stream of length m, we report all items with frequency at least $\frac{m}{k}$.
Intuition: If there are k coordinates with frequency $\frac{m}{k}$, they will all be tracked and reported, since we have k counters. If there are $\frac{m}{2}$ coordinates with frequency at least $\frac{m}{k}$, we still have $\frac{k}{2}$ counters for the remaining $\frac{m}{2}$, updates Will have at most $\frac{m}{k}$ decrement operations, which is small enough so that frequent items are still stored.

However, the Misra-Gries algorithm has some drawbacks. Misra-Gires may return false positives, like the items that are not frequent.

In fact, no algorithm using $o(n)$ space can output, ONLY the items with frequency at least $\frac{n}{k}$.
Intuition: Hard to decide whether coordinate has frequency $\frac{n}{k}$ or $\frac{n}{k}-1$.
Example: Suppose $n^{\prime}=\Theta(n)$ items appear either once or never, e.g., $x_{1}=2, x_{2}=5, x_{3}=4$, $x_{4}=7, x_{5}=1, x_{6}=9, \ldots$ Then suppose a single random item appears $\frac{n}{k}-1$ times, e.g., $x_{\frac{n}{k}+1}=a$, $x_{\frac{n}{k}+2}=a, \ldots, x_{n}=a$. Then a appears $\frac{n}{k}$ if and only if it appears in the first n^{\prime} items. However, this requires storing the entire set of $\Theta(n)$ items.

(ε, k)-Frequent Items Problem

- Goal: Given a set S of m elements from [n], an accuracy parameter $\varepsilon \in(0,1)$, and a parameter k, output a list that includes:
- The items from $[n]$ that have frequency at least $\frac{m}{k}$
- No items with frequency less than $(1-\varepsilon) \frac{m}{k}$

Misra-Gries for (ε, k)-Frequent Items Problem

Algorithm: Set $r=\left[\frac{k}{\varepsilon}\right]$ and initialize r items V_{1}, \ldots, V_{r} with count $c_{1}, \ldots, c_{r}=0$. For updates $i=1, \ldots, m$: If $V_{t}=x_{i}$ for some $t \in[r]$, increment counter c_{t}, i.e., $c_{t}=c_{t}+1$. Else if $c_{t}=0$ for some $t \in[r]$, set $V_{t}=x_{i}$. Else decrement all counters c_{j}, i.e., $c_{t}=c_{t}-1$ for all $t \in[r]$.
Claim: For all estimated frequencies $\hat{f_{i}}$ by Misra-Gries, we have

$$
f_{i}-\frac{\varepsilon m}{k} \leq \hat{f}_{i} \leq f_{i} .
$$

In particular, if $f_{i} \geq \frac{m}{k}$, then

$$
\hat{f}_{i} \geq f_{i}-\frac{\varepsilon m}{k}
$$

and if $f_{i}<(1-\varepsilon) \cdot \frac{m}{k}$, then

$$
\hat{f}_{i}<f_{i}-\frac{\varepsilon m}{k} .
$$

Thus if we return coordinates V_{t} with $c_{t} \geq(1-\varepsilon) \cdot \frac{m}{k}$ then:

- i with $f_{i} \geq \frac{m}{k}$ will be returned
- No i with $f_{i}<(1-\varepsilon) \cdot \frac{m}{k}$ will be returned

Summary: Misra-Gries can be used to solve the (ε, k)-frequent items problems. It is a deterministic algorithm that uses $O\left(\frac{k}{\varepsilon} \log n\right)$ bits of space and it always underestimates the true frequency.

