CSCE 689: Special Topics in Modern Algorithms for Data Science Fall 2023

Lecture 10 — September 13, 2023

Prof. Samson Zhou

Scribe: Zhitong Chen

Frequent Items

- Goal: Given a set S of m elements from [n] and a parameter k, output the items from [n] that have frequency at least $\frac{m}{k}$.
- How many items can be returned?

The Answer is: at most k coordinates with frequency at least $\frac{m}{k}$. Why? Assuming that more items are returned than k, then the frequency of each item is at least $\frac{m}{k}$, which means that the total number of elements will be more than m, which contradicts the fact that we only have m elements.

• For k = 20, want items that are at least 5% of the stream.

The Answer is: First, consider that we are looking for items with a frequency of at least $\frac{m}{k}$, and when k = 20, we are looking for items with a frequency of at least $\frac{m}{20}$. Converting this frequency to a percentage: $\frac{(m/20)}{m}$. Simplifying this expression, we get $\frac{1}{20}$, which is 5%, so for k = 20, we want to find those items that make up at least 5% of the data stream.

Majority

• Goal: Given a set S of m elements from [n] and a parameter k = 2, output the items from [n] that have frequency at least $\frac{m}{2}$.

Explanation: When you have a set S containing m elements and they come from [n] (which might be a larger range or set), and given the parameter k = 2, the goal is to find those terms that have a frequency of at least $\frac{m}{2}$ among those m elements. Since k has been defined as 2, we would like to find terms that occur at least half as often as the whole stream.

• Find the item that forms the majority of the stream

Algorithm (Boyer-Moore majority vote algorithm): Initialize item $V = \bot$ with count c = 0. For updates i = 1, ..., m: If c = 0, set $V = x_i$ and c = 1. Otherwise if $V = x_i$, increment c. Otherwise if $V \neq x_i$ and c > 0, decrement c.

Intuition: Initialize $V = \bot$ and counter c = 0. If x_1 is not the majority item, it must be deleted at some time T. At time T, the stream will have consumed $\frac{T}{2}$ instances of x_1 , so that the majority item of the stream must have only appeared at most $\frac{T}{2}$ times. Thus of the remaining $\frac{m}{2} - \frac{T}{2}$ updates, the majority item of the entire stream remains the majority over the rest of the stream.

Misra-Gries Algorithm

• Goal: Given a set S of m elements from [n] and a parameter k, output the items from [n] that have frequency at least $\frac{m}{k}$.

Algorithm: Initialize k items $V_1, ..., V_k$ with count $c_1, ..., c_k = 0$. For updates i = 1, ..., m: If $V_t = x_i$ for some t, increase counter c_t by setting $c_t = c_t + 1$. Else if $c_t = 0$ for some t, set $V_t = x_i$. Else decrease all counters $c_t = c_t - 1$.

Claim: At the end of the stream of length m, we report all items with frequency at least $\frac{m}{k}$.

Intuition: If there are k coordinates with frequency $\frac{m}{k}$, they will all be tracked and reported, since we have k counters. If there are $\frac{m}{2}$ coordinates with frequency at least $\frac{m}{k}$, we still have $\frac{k}{2}$ counters for the remaining $\frac{m}{2}$, updates Will have at most $\frac{m}{k}$ decrement operations, which is small enough so that frequent items are still stored.

However, the Misra-Gries algorithm has some drawbacks. Misra-Gires may return false positives, like the items that are not frequent.

In fact, no algorithm using o(n) space can output, ONLY the items with frequency at least $\frac{n}{k}$.

Intuition: Hard to decide whether coordinate has frequency $\frac{n}{k}$ or $\frac{n}{k} - 1$.

Example: Suppose $n' = \Theta(n)$ items appear either once or never, e.g., $x_1 = 2$, $x_2 = 5$, $x_3 = 4$, $x_4 = 7$, $x_5 = 1$, $x_6 = 9$, ... Then suppose a single random item appears $\frac{n}{k} - 1$ times, e.g., $x_{\frac{n}{k}+1} = a$, $x_{\frac{n}{k}+2} = a$, ..., $x_n = a$. Then a appears $\frac{n}{k}$ if and only if it appears in the first n' items. However, this requires storing the entire set of $\Theta(n)$ items.

(ε, k) -Frequent Items Problem

- Goal: Given a set S of m elements from [n], an accuracy parameter $\varepsilon \in (0,1)$, and a parameter k, output a list that includes:
 - The items from [n] that have frequency at least $\frac{m}{k}$
 - No items with frequency less than $(1-\varepsilon)\frac{m}{k}$

Misra-Gries for (ε, k) -Frequent Items Problem

Algorithm: Set $r = \begin{bmatrix} \frac{k}{\varepsilon} \end{bmatrix}$ and initialize r items $V_1, ..., V_r$ with count $c_1, ..., c_r = 0$. For updates i = 1, ..., m: If $V_t = x_i$ for some $t \in [r]$, increment counter c_t , i.e., $c_t = c_t + 1$. Else if $c_t = 0$ for some $t \in [r]$, set $V_t = x_i$. Else decrement all counters c_j , i.e., $c_t = c_t - 1$ for all $t \in [r]$.

Claim: For all estimated frequencies \hat{f}_i by Misra-Gries, we have

$$f_i - \frac{\varepsilon m}{k} \le \hat{f}_i \le f_i.$$

In particular, if $f_i \geq \frac{m}{k}$, then

$$\hat{f}_i \ge f_i - \frac{\varepsilon m}{k}$$

and if $f_i < (1 - \varepsilon) \cdot \frac{m}{k}$, then

$$\hat{f}_i < f_i - \frac{\varepsilon m}{k}$$

Thus if we return coordinates V_t with $c_t \ge (1 - \varepsilon) \cdot \frac{m}{k}$ then:

- i with $f_i \ge \frac{m}{k}$ will be returned
- No *i* with $f_i < (1 \varepsilon) \cdot \frac{m}{k}$ will be returned

Summary: Misra-Gries can be used to solve the (ε, k) -frequent items problems. It is a deterministic algorithm that uses $O\left(\frac{k}{\varepsilon}\log n\right)$ bits of space and it always underestimates the true frequency.