
CSCE 689: Special Topics in Modern Algorithms for Data Science Fall 2023

Lecture 11 — September 15, 2023
Prof. Samson Zhou Scribe: Matthew Chang

1 Insertion-Deletion Streams

Definition (Insertion-deletion Stream). An insertion-deletion stream consists updates to a vector,
f ∈ Rn, which tracks incoming changes by either increasing or decreasing a coordinate in f .

When tracking changes, suppose we have a stream length m = Θ(n), a universe of size [n], and an
underlying vector f ∈ Rn.

For example, we have a vector f .

f1 f2 f3 f4 f5 f6 f7
0 0 0 0 0 0 0

If "Decrease f6" were to appear in our stream, we would get:

f1 f2 f3 f4 f5 f6 f7
0 0 0 0 0 -1 0

1.1 Applications

To name a few applications of insertion-deletion streams:

• Database Management - track database changes to ensure data integrity and support rollbacks
and recovery

• Version Control Systems - track changes to files for collaboration and software development

• Traffic Flow and Transportation Systems - analyze traffic patterns and changes in transportation
systems to optimize traffic flow, manage congestion, and improve transportation infrastructure

2 CountMin

In the previous lecture, we used Misa Gries algorithm for (ϵ, k)-frequent items problem. However,
Misa Gries only works on insertion-only streams and never overestimates the true frequencies.

The CountMin algorithm can be used on insertion-deletion streams and easily parallelized across
multiple servers. A drawback is that is does require randomness when it comes to hashing. It differs
from Misa Gries in that it is not deterministic and it never underestimates the true frequency on
insertion-only streams.

1

2.1 Algorithm

The CountMin algorithm is as follows:

1. Initially, we create b buckets of counters and use a random hash function h : [n] → [b]

2. As we receive each update xi, increment the counter h(xi)

3. At the end of the stream, output the counter h(xi) as the estimate for xi

4. Repeat steps 1-3 with different random hash functions l := O(log(n)) times to get estimates
e1, ..., el for each i ∈ [n] and set f̂i = min(e1, ..., el)

2.2 Analysis

2.2.1 Estimation

Suppose h(i) = a so that ca = f̂i where ca counts the number fj occurences of any j with
h(j) = a = h(i), including fi itself.

Note that for insertion-only streams, the algorithm will never underestimate the true value for any
fi. So we always have f̂i ≥ fi where f̂i is the estimated frequency for fi

2.2.2 Expected Error

The expected value for ca, the counter for bin a, is the sum of the updates for fi plus the sum of
the updates for all of the other fj that collide with the same hash function:

ca = fi + E[
∑

j ̸=i,j:h(j)=a

fj]

Observe that the expected error is the second term. Thus we have:

E[
∑

j ̸=i,j:h(j)=a

fj] =
∑
j ̸=i

E[fj · Ih(j)=h(i)],

where I is an indicator variable that equals 1 if h(j) = h(i) and 0 otherwise. Then

E[
∑

j ̸=i,j:h(j)=a

fj] =
∑
j ̸=i

E[Ih(j)=h(i)] · fj

≤
∑
j ̸=i

Pr[h(j) = h(i)] · |fj |

=
∑
j ̸=i

1
b

· |fj |

= ∥f∥1
b

.

2

Note that we always have ∥f∥1 ≤ m. Thus the expected error of fi is dependent on the number
of bins in our hash function. We can decrease or increase the number of bins b in f to increase or
decrease the error in our CountMin estimation, respectively. By setting b = O

(
k
ε

)
, we can solve the

(ε, k)-Frequent Items Problem, in which case CountMin would use O
(

k
ε log n

)
bits of space.

3

	Insertion-Deletion Streams
	Applications

	CountMin
	Algorithm
	Analysis
	Estimation
	Expected Error

