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1 L2 Heavy-Hitters problem.

We will first consider a L2 Heavy-Hitters problem, defined as follows:

Given a set {S} of m elements from a stream [n], we have a frequency vector f ∈ Rn where fi is the
frequency of i-th item, and a threshold parameter ε ∈ (0, 1). We want a list that includes:

• The items from [n] that have frequency at least ε · ∥f∥2

• No item with frequency less than ε
2 · ∥f∥2

Compared to the previously mentioned L1 Heavy-Hitters problem, we now are interested in the
items that are still frequent but less frequent than the L1 Heavy-Hitters, because ∥f∥2 is always
less than or equal to ∥f∥1. To solve this problem, we introduce the CountSketch algorithm.

2 CountSketch

In general, CountSketch uses the randomized signs of different items to cancel out their effect on
the estimated frequency.

Initialization: First we create b buckets of counters and use a random hash function h : [n] → [b] to
map the streaming item to its corresponding bucket. And we also assign a uniformly random sign
function s : [n] → {−1, +1} , i.e., Pr[s(i) = +1] = Pr[s(i) = −1] = 1/2 to assign a sign for each
element.

Algorithm: For each insertion(or deletion) to the element xi, we change the counter h(xi) by s(xi)
(or −s(xi)). At the end of the stream, output the quantity s(xi) · h(xi) as the estimated frequency
for xi.

Here we give an example: suppose the stream is [1, 1, 2, 3, 5, 1, 2, 4], h(x) = x mod 3 and s(xi) = 1
for xi ≤ 3. We denote the b buckets as {c1, c2, c3}. Then we have:

f1 f2 f3 f4 f5
3 2 1 1 1
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s(x1) s(x2) s(x3) s(x4) s(x5)
1 1 1 −1 −1

c1 c2 c3
2 1 1

Given a set S of m elements from [n], let f̂i be the estimated frequency for fi. Suppose h(i) = a ,
then we have f̂i = s(i) · ca.

3 CountSketch error analysis

We are now considering the error of the estimated frequency f̂i compared to the ground truth
frequency fi.

We have ca = ∑
(j:h(j)=a)(s(j) · fa) and the estimated frequency fi of i is

f̂i = s(i) · ca (1)
= s(i) ·

∑
(j:h(j)=a)

(s(j) · fa) (2)

= s(i) · s(i) · fi +
∑

(j ̸=i:h(j)=a)
(s(i) · s(j) · fj) (3)

Since s(i) ∈ {−1, +1}, we have s(i) · s(i) = 1 and

= fi +
∑

(j ̸=i:h(j)=a)
(s(i) · s(j) · fj) (4)

3.1 Mean Analysis

Now we can write the error as errori = f̂i − fi = ∑
(j ̸=i:h(j)=a)(s(i) · s(j) · fj). And

E[errori] = E[
∑

j ̸=i:h(j)=a

(s(i) · s(j) · fj)] (5)

=
∑
j ̸=i

E[(s(i) · s(j) · fj · Pr[hj = hi])] (6)

Because E[si] = 0 and si and sj are independent to other variables, we have

=
∑
j ̸=i

E[(s(i)] · E[s(j)] · E[fj · Pr[hj = hi])] (7)

= 0 (8)

This means f̂i is an unbiased estimator for fi.
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3.2 Variance analysis

Now we consider the variance of |errori|. We have

E[error2
i ] = E[(

∑
j ̸=i:h(j)=a

(s(i) · s(j) · fj))2] (9)

= E[s(i)2 · (
∑

j ̸=i:h(j)=a

(s(j) · fj))2] (10)

= E[(
∑

j ̸=i:h(j)=a

(s(j) · fj))2] (11)

Because E[si · sj ] = 0 when j ̸= i , we have

=
∑
j ̸=i

E[f2
j · Pr[hj = hi]] (12)

=
∑
j ̸=i

f2
j · Pr[hj = hi] (13)

=
∑
j ̸=i

f2
j · 1

b
(14)

≤ ∥f∥2
2

b
(15)

Because V ar(x) = E[x2] − E[x]2 ≤ E[x2], V ar(errori) is bounded by ∥f∥2
2

b .

If we set b = 9k2

ε2 , then the variance can be bounded by ε2∥f∥2
2

9k2 . Recall Chebyshev’s inequality,

P (|X − µ| ≥ mσ) ≤ 1
m2 (16)

Let σ = ε∥f∥2
3k and m = 3, then the probability that error for fi is more than ε∥f∥2

k is less than 1/9.

Thus we can answer the L2 Heavy-Hitters problem. If we pick the items based on their esti-
mated frequency f̂i, all the items we picked will satisfy the L2 Heavy-Hitters requirements.

4 Success boosting

If we have fixed b and we want to increase the success probability of f̂i so that we can guarantee
correctness for all i ∈ [n] by a union bound, we can repeat multiple times to get estimates e1, ...el,
and use the median as the final estimator, applying Chernoff bounds.
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