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Previously we have learned that we can estimate the frequency of some element bounded by an
error that is a certain fraction of the L2 norm. The lecture today answers exactly this question.
Here are some of the main points covered in class.

1 Why do we need to know L2 norm?

The CountSketch algorithm solves the L2 heavy hitters problem. Given a set S of m elements from
[n] that induces a frequency vector f ∈ Rn, and a threshold parameter ε ∈ (0, 1), output a list that
includes the items from [n] that have frequency at least ε· ∥ f ∥2, and no items with frequency
less that 0.5ε· ∥ f ∥2. Notice that we would need to know the L2 norm of the frequency vector to
implement the CountSketch algorithm.

2 How do we apply the Johnson-Lindenstraus Lemma for finding
L2 norm?

We know that the distributional Johnson Lindenstrauss lemma applies a random d by n matrix
with each entry drawn from a Gaussian distribution to multiple with a vector, then L2 norm of the
multiplied results will be bounded by 1 + / − ε of the L2 norm of the vector. So to estimate the L2
norm, we first generate a d by n matrix Π with each entry drawn from a Gaussian distribution. Let
g = Πf be the internal multiplication of the matrix and the frequency vector. Whenever there is an
update to a coordinate of f , say the frequency count is changed, we will update g. Note that the
update to g is basically adding a vector to f and then g. Then the L2 norm of g would be bounded
by a certain percentage of the frequency vector.

3 How does the AMS algorithm work?

The AMS algorithm can be used to estimate the L2 norm of a frequency vector also. First, we will
generate a random sign vector s ∈ {−1, +1}. We then set W = ⟨s, f⟩ and output Z = W 2 as the
estimate for the squared L2 norm.

Note that

E[Z] = E[W 2] = E

∑
i,j
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since s is a random sign vector. Hence, each dot product is an unbiased estimate of ∥f∥2
2. Moreover,
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the variance of Z is at most

E[Z2] = E[W 4] = E

 ∑
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Hence by Chebyshev’s inequality, if we take the mean of O
(

1
ε2

)
independent instances, we can

obtain a (1 + ε)-approximation to ∥f∥2
2.
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