
CSCE 689: Special Topics in Modern Algorithms for Data Science Fall 2023

Lecture 15 — October 2, 2023
Prof. Samson Zhou Scribe: Jung Hoon Seo

In the previous lectures, we delved into various streaming algorithms, conducting a comparison
between Misra-Gries and Count-Min. Our analysis revealed that Count-Min offers greater versatility
since the Misra-Gries algorithm is confined to handling insertions alone. Following this, we delved
into Count-Sketch. While Misra-Gries and Count-Min utilize the L1 norm, which involves examining
the entire data stream to identify coordinates with the least percentage, Count-Sketch employs the
L2 norm and a geometric interpretation. This approach provides better approximations for each
item in the dataset due to the smaller errors associated with the L2 norm. In this lecture, we will
explore another streaming model called Sparse Recovery.

1 Sparse Recovery

1.1 Applications

• Anomaly Detection - Imagine a scenario where there is not much activity on the network.
However, as time progresses, the network may experience an influx of users. This presents a
vulnerability as adversaries attempt to overwhelm the network by flooding it with messages,
often resorting to paying spam boxes to do so. In such situations, sparse recovery comes into
play, as it involves modeling typical behavior as a sparse signal. This allows for the real-time
detection of deviations from this model, helping to safeguard the network.

• Real-time Compressive Imaging - Images can undergo sparsification through a transfor-
mation known as the Haar wavelet. Following the application of the wavelet, the majority
of pixels tend to become dark, leaving only a sparse number of them appearing white. This
technique plays a role in facilitating the real-time reconstruction of high-resolution images
and videos.

• Online Natural Language Processing - Noiseless sparse recovery aids in the extraction
of relevant features or patterns from streaming text data by selecting K-words that compre-
hensively represent the topics at hand. By employing this technique, we can achieve tasks
such as text summarization and topic modeling.

1.2 Algorithms

The goal of Sparse Recovery is to retrieve the k non-zero coordinates along with their respective
frequencies from an insertion-deletion stream of a certain length, where there are no more than k
non-zero coordinates at the end. Suppose k = 1, and we are promised the coordinate has a frequency
of 1. If this is the case, the Sparse Recovery algorithm works by keeping s running sum of all the
coordinates ∑

i∈[m]
sici = j

1



• Each insertion to coordinate ci ∈ [n] as ui ← (si = 1, ci)

• Each deletion to coordinate ci ∈ [n] as ui ← (si = −1, ci)

For example, if we have the following:

u1 : Increase f6 u2 : Increase f3

u3 : Decrease f3 u4 : Increase f2

u5 : Decrease f6

we can apply the running sum of coordinates, then∑
i∈[m]

sici = j = (1)(6) + (1)(3) + (−1)(3) + (1)(2) + (−1)(6) = 2

Nevertheless, this algorithm encounters failure when the frequency is not equal to 1 or when k ̸= 1.
To overcome this limitation, we can enhance the algorithm by incorporating an additional premise:
maintaining a running sum of all coordinates and introducing a distinct linear combination of these
coordinates. Then, we have ∑

i∈[m]
sici = j · fj and

∑
i∈[m]

sic
2
i = j2 · fj

If we consider this new example, where the frequency value for the last coordinate is now 2,

u1 : Increase f6 u2 : Increase f3

u3 : Decrease f3 u4 : Increase f2

u5 : Decrease f6 u6 : Increase f2

then, we have∑
i∈[m]

sici = j · fj = (1)(6) + (1)(3) + (−1)(3) + (1)(2) + (−1)(6) + (1)(2) = 4

∑
i∈[m]

sic
2
i = j2 · fj = (1)(36) + (1)(9) + (−1)(9) + (1)(4) + (−1)(36) + (1)(4) = 8

If we divide
∑

i∈[m] sic
2
i by

∑
i∈[m] sici, then we have fj = 2 and j = 2.∑

i∈[m] sic
2
i∑

i∈[m] sici
= j2 · fj

j · fj
= j = 8

4 = 2

In the general case, when there are k non-zero coordinates, we compute 2k running sums of different
linear combinations of all the coordinates. At the end of this process, we have 2k equations with 2k
unknown variables. The space complexity for this case is O(k) words of space.

2



However, in real-life scenarios, even when there are k items that predominantly contribute to the
noise, you may still encounter unwanted interference in other coordinates. For instance, consider a
situation where you have K coordinates with significantly high values. Suppose we have a vector

100 0.01 100 − 0.01 0.1 1.1 − 0.1 0.1 − 0.1

then the best k-sparse vector that is close to the vector above is going to be

100 0 100 0 0 0 0 0 0

3


	Sparse Recovery
	Applications
	Algorithms


