1 Distinct Elements

1.1 Estimation of F_{0}

Consider a set S comprising N numbers, and let us assume that we create a new set, denoted as S^{\prime}, by sampling each element from S with a probability of $\frac{1}{2}$. Then the expectation for the S^{\prime} is:

$$
\mathbb{E}\left[\left|S^{\prime}\right|\right]=\frac{N}{2}
$$

and the variance is:

$$
\operatorname{Var}\left[\left|S^{\prime}\right|\right] \leq \frac{N}{2}
$$

Let $X_{1}, \ldots X_{N}$ be indicator random variables, such that $X_{i}=1$ when the i-th element of S is sampled into S^{\prime}, and $X_{i}=0$ otherwise. Let X be the sum of these random variables, $X_{1}, \ldots X_{N}$ such that $X=\left|S^{\prime}\right|$. Then, the variance of X is:

$$
\operatorname{Var}[X]=\operatorname{Var}\left[X_{1}\right]+\ldots+\operatorname{Var}\left[X_{N}\right]=N \cdot \operatorname{Var}\left[X_{i}\right]
$$

and, the variance of X_{i} is:

$$
\operatorname{Var}\left[X_{i}\right]=\mathbb{E}\left[X_{i}^{2}\right]-\mathbb{E}\left[X_{i}\right]^{2}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}
$$

Since the variance of each X_{i} is $\frac{1}{4}$, and the variance of the size of S^{\prime} is equivalent to X, the variance of S^{\prime} is as follows:

$$
\operatorname{Var}\left[\left|S^{\prime}\right|\right]=\frac{N}{4}
$$

We can apply Chebyshev's inequality now since we have established a variance bound. This will allow us to analyze the probability that the number of distinct elements in S^{\prime} deviates from \mathbb{E}, which is $\frac{N}{2}$.

$$
\operatorname{Pr}\left[\left|S^{\prime}\right|-\frac{N}{2} \geq t\right]
$$

By Chebyshev's inequality, we have

$$
\operatorname{Pr}\left[\left|S^{\prime}\right|-\frac{N}{2} \geq 100 \sqrt{N}\right] \leq \frac{1}{10}
$$

This indicates that the probability of a deviation in the number of distinct elements in S^{\prime} from its expected value is relatively low. If we establish a bound on $\left|S^{\prime}\right|$ with a probability of at least $\frac{9}{10}$, then the number of distinct elements in the sub-stream S^{\prime} is:

$$
\frac{N}{2}-100 \sqrt{N} \leq\left|S^{\prime}\right| \leq \frac{N}{2}+100 \sqrt{N}
$$

By multiplying the count of distinct elements in S^{\prime} by 2 , we can obtain a reliable estimate of the total number of distinct elements in the original dataset, as follows:

$$
N-200 \sqrt{N} \leq 2\left|S^{\prime}\right| \leq N+200 \sqrt{N}
$$

If we assume $200 \sqrt{N} \leq \frac{N}{200}$ then, we get

$$
0.99 N \leq 2\left|S^{\prime}\right| \leq 1.01 N
$$

This confirms that by sampling each item from the universe with a probability of $\frac{1}{2}$, we can create a new universe, U^{\prime}. If we define S^{\prime} as the set of items in the data stream that belong to U^{\prime}, then the resulting output is $2\left|S^{\prime}\right|$. However, while this algorithm may provide a good estimate of the actual count of distinct elements, the space required remains unreasonably large. To enhance this, we can form set S^{\prime} by sampling each item from S with a probability p, instead of the probability of $\frac{1}{2}$. As a result, the expectation for the S^{\prime} becomes:

$$
\mathbb{E}\left[\left|S^{\prime}\right|\right]=p N
$$

and the variance is:

$$
\operatorname{Var}\left[\left|S^{\prime}\right|\right] \leq p N
$$

Using Chebyshev's inequality with a probability of at least $\frac{9}{10}$, we can establish a bound on the likelihood of the number of elements in S^{\prime} deviating from its expected value, as follows:

$$
p N-100 \sqrt{p N} \leq\left|S^{\prime}\right| \leq p N+100 \sqrt{p N}
$$

We can re-scale it by $\frac{1}{p}$, then

$$
N-\frac{100}{\sqrt{p}} \sqrt{N} \leq \frac{1}{p}\left|S^{\prime}\right| \leq N+\frac{100}{\sqrt{p}} \sqrt{N}
$$

If we assume $\frac{100}{\sqrt{p}} \sqrt{N} \leq \varepsilon N$ then, we get

$$
(1-\varepsilon) N \leq \frac{1}{p}\left|S^{\prime}\right| \leq(1+\varepsilon) N
$$

Therefore, with probability at least $\frac{9}{10}$, we can conclude that $\frac{1}{p}\left|S^{\prime}\right|$ is a $(1+\varepsilon)$ approximation of N where the value of p is bounded by $p \geq \frac{1000}{\varepsilon^{2} N}$.

1.2 Finding p value

While we know that p is bounded by $p \geq \frac{1000}{\varepsilon^{2} N}$, determining N becomes a prerequisite for setting p, which poses a challenge since the primary objective is to estimate N. To determine the optimal value for p, we aim for p to be small enough to avoid an excessive number of samples while ensuring it is not too small to result in a low additive error. Suppose we know N, then for $p=\Theta\left(\frac{1}{\varepsilon^{2} N}\right)$, we have

$$
\mathbb{E}\left[\left|S^{\prime}\right|\right]=p N=\Theta\left(\frac{1}{\varepsilon^{2}}\right)
$$

To determine p such that $\mathbb{E}\left[\left|S^{\prime}\right|\right]=p N=\Theta\left(\frac{1}{\varepsilon^{2}}\right)$, we can experiment with values of p, starting with $p=1, \frac{1}{2}, \frac{1}{4} \ldots$, and selecting the one for which

$$
\frac{1000}{\varepsilon} \leq\left|S^{\prime}\right| \leq \frac{2000}{\varepsilon^{2}}
$$

However, incorrect guesses for p may lead to an excessive number of samples. Therefore, we can employ a dynamic approach by adjusting the p values and sub-sampling accordingly to mitigate this issue.

Algorithm

1. Set $U_{0}=[n]$ and for each i, sample each element of $U_{i}-1$ with probability $\frac{1}{2}$
2. Start index $i=0$ and track the number $\left|S \cap U_{i}\right|$ of elements S in U_{i}
3. If $\left|S \cap U_{i}\right|<\frac{2000}{\varepsilon^{2}} \log (n)$, then increment $i=i+1$

Explanation: Initially, we retain all distinct elements. When the sample count surpasses $\frac{2000}{\varepsilon^{2}} \log (n)$ we dynamically increase our sampling probability by a factor of $\frac{1}{2}$, resulting in a corresponding halving of the maintained set. Simultaneously, we keep track of the values of p, which follow the sequence $\left\{\frac{1}{2}, \frac{1}{4}, \ldots, \frac{1}{2^{n}}\right\}$. Ultimately, this process leads us to determine the optimal value of p, resulting in an output of $2^{i} \cdot\left|S \cap U_{i}\right|$.

Summary: The algorithm stores a maximum of $\frac{2000}{\varepsilon^{2}} \log (n)$ elements from the stream and requires $\Theta\left(\frac{1}{\varepsilon^{2}} \log (n)\right)$ words of space.

