
CSCE 689: Special Topics in Modern Algorithms for Data Science Fall 2023

Lecture 18 — October 13, 2023
Prof. Samson Zhou Scribe: Anmol Anand

1 L0 Sampling

Sampling distinct elements with similar probability

Given a set S of m elements from [n], such that S has N distinct elements. The goal is to return a
random sample, such that each unique item from S is chosen with probability 1

N ±
1

poly(N) , where
poly(N) is an arbitrarily large polynomial in N (for example: N1000).

The motivation of this problem is summarizing data and to deal with the unique elements in a
stream regardless of their frequency.

1.1 Reservoir Sampling

Can we use reservoir sampling to solve this problem? — No, because, reservoir sampling would
sample every unique element x with the probability fx

m , where fx is the frequency of x in the stream
and m is the length of the stream. For example, reservoir sampling cannot sample the unique
elements {1, 2} in the following stream with similar probability. The probability of sampling 2 will
be considerably higher if we use reservoir sampling.

1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1.2 Distinct Elements (F0 Estimation)

Let’s recall that the algorithm to find the number of distinct elements is as follows:

Algorithm 1: Number of distinct elements (F0 estimation)
1 Set U0 = [n] and i = 1
2 Sample each element of Ui−1 into Ui with probability 1

2
3 If |S ∩ Ui| > 2000

ε2 log n, then increment i← i + 1 and repeat from Step 2
4 At the end of the stream, output 2i · |S ∩ Ui|

1

Can we use the distinct elements (F0 Estimation) algorithm to sample from distinct elements in a
stream with arbitrarily similar probability? — Yes. Run the distinct elements algorithm and at the
end of the stream, output a random element from S ∩ Ui.

Algorithm 2: Sampling distinct elements with arbitrarily similar probability using F0 estimation
1 Set U0 = [n] and i = 1
2 Sample each element of Ui−1 into Ui with probability 1

2
3 If |S ∩ Ui| > 2000

ε2 log n, then increment i← i + 1 and repeat from Step 2
4 At the end of the stream, output a random elements from S ∩ Ui

2 Distinct Elements (F0 Estimation)

Apart from Algorithm 1, another simpler algorithm to estimate the number of distinct elements for
insertion-only streams uses hash functions and is as follows:

Algorithm 3:
1 Let h : [n]→ [0, 1] be a random hash function with a real-valued output
2 Initialize s = 1
3 For x1, x2, ..., xm: s← min (s, h (xi))
4 Return Z = 1

s − 1

The intuition behind this algorithm is that the larger the value of N , the smaller we expect s to be.

There are other results that follow from this algorithm:

• It can be shown that E[s] = 1
N + 1 – however this is not the same as E[Z] = N (which is not

true!)

• It can be shown that |s− E[s]| ≤ ε · E[s] =⇒ (1− 2ε)N ≤ Z ≤ (1 + 4ε)N

• It can be shown that V ar[s] ≤ 1
(N + 1)2

• It can be shown that by taking the mean of O

(
1
ε2

)
independent instances , we get |s−E[s]| ≤

ε · E[s] with probability 2
3

Note that (1− ε)s ≤ E[s] ≤ (1 + ε)s implies (1−O(ε)) ·N ≤ Z ≤ (1 + O(ε)) ·N .

The space complexity of Algorithm 3 is O(1) words. If we run O

(
1
ε2

)
independent instances, the

space complexity of this algorithm is O

(
1
ε2

)
as we only need to store the s value for each of these

instances.

2

	 L0 Sampling
	Reservoir Sampling
	Distinct Elements (F0 Estimation)

	Distinct Elements (F0 Estimation)

