CSCE 689: Special Topics in Modern Algorithms for Data Science Fall 2023

Lecture 18 - October 13, 2023
Prof. Samson Zhou
Scribe: Anmol Anand

$1 \quad L_{0}$ Sampling

Sampling distinct elements with similar probability
Given a set S of m elements from $[n]$, such that S has N distinct elements. The goal is to return a random sample, such that each unique item from S is chosen with probability $\frac{1}{N} \pm \frac{1}{\operatorname{poly}(N)}$, where $\operatorname{pol} y(N)$ is an arbitrarily large polynomial in N (for example: N^{1000}).

The motivation of this problem is summarizing data and to deal with the unique elements in a stream regardless of their frequency.

1.1 Reservoir Sampling

Can we use reservoir sampling to solve this problem? - No, because, reservoir sampling would sample every unique element x with the probability $\frac{f_{x}}{m}$, where f_{x} is the frequency of x in the stream and m is the length of the stream. For example, reservoir sampling cannot sample the unique elements $\{1,2\}$ in the following stream with similar probability. The probability of sampling 2 will be considerably higher if we use reservoir sampling.

$$
1222222222222222222
$$

1.2 Distinct Elements (F_{0} Estimation)

Let's recall that the algorithm to find the number of distinct elements is as follows:

[^0]Can we use the distinct elements (F_{0} Estimation) algorithm to sample from distinct elements in a stream with arbitrarily similar probability? - Yes. Run the distinct elements algorithm and at the end of the stream, output a random element from $S \cap U_{i}$.

```
Algorithm 2: Sampling distinct elements with arbitrarily similar probability using \(F_{0}\) estimation
1 Set \(U_{0}=[n]\) and \(i=1\)
2 Sample each element of \(U_{i-1}\) into \(U_{i}\) with probability \(\frac{1}{2}\)
3 If \(\left|S \cap U_{i}\right|>\frac{2000}{\varepsilon^{2}} \log n\), then increment \(i \leftarrow i+1\) and repeat from Step 2
4 At the end of the stream, output a random elements from \(S \cap U_{i}\)
```


2 Distinct Elements (F_{0} Estimation)

Apart from Algorithm 1, another simpler algorithm to estimate the number of distinct elements for insertion-only streams uses hash functions and is as follows:

```
Algorithm 3:
1 Let \(h:[n] \rightarrow[0,1]\) be a random hash function with a real-valued output
Initialize \(\mathrm{s}=1\)
3 For \(x_{1}, x_{2}, \ldots, x_{m}: s \leftarrow \min \left(s, h\left(x_{i}\right)\right)\)
4 Return \(Z=\frac{1}{s}-1\)
```

The intuition behind this algorithm is that the larger the value of N, the smaller we expect s to be. There are other results that follow from this algorithm:

- It can be shown that $E[s]=\frac{1}{N+1}$ - however this is not the same as $E[Z]=N$ (which is not true!)
- It can be shown that $|s-E[s]| \leq \varepsilon \cdot E[s] \Longrightarrow(1-2 \varepsilon) N \leq Z \leq(1+4 \varepsilon) N$
- It can be shown that $\operatorname{Var}[s] \leq \frac{1}{(N+1)^{2}}$
- It can be shown that by taking the mean of $O\left(\frac{1}{\varepsilon^{2}}\right)$ independent instances, we get $|s-E[s]| \leq$ $\varepsilon \cdot E[s]$ with probability $\frac{2}{3}$

Note that $(1-\varepsilon) s \leq E[s] \leq(1+\varepsilon) s$ implies $(1-O(\varepsilon)) \cdot N \leq Z \leq(1+O(\varepsilon)) \cdot N$.
The space complexity of Algorithm 3 is $O(1)$ words. If we run $O\left(\frac{1}{\varepsilon^{2}}\right)$ independent instances, the space complexity of this algorithm is $O\left(\frac{1}{\varepsilon^{2}}\right)$ as we only need to store the s value for each of these instances.

[^0]: Algorithm 1: Number of distinct elements (F_{0} estimation)
 1 Set $U_{0}=[n]$ and $i=1$
 2 Sample each element of U_{i-1} into U_{i} with probability $\frac{1}{2}$
 3 If $\left|S \cap U_{i}\right|>\frac{2000}{\varepsilon^{2}} \log n$, then increment $i \leftarrow i+1$ and repeat from Step 2
 4 At the end of the stream, output $2^{i} \cdot\left|S \cap U_{i}\right|$

