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1 Clustering

Definition (Clustering). Given input dataset X, partition X so that "similar" points are in the
same cluster and "different" points are in different clusters.

1.1 k-clustering

k-clustering provides a parameter to the clustering problem where there can be at most k different
clusters.

To measure the "quality" of a clustering partition, we need to assign a "center", ci, to each of the k
clusters and then define a cost function.

The cost function is induced by ci for all of the points Pi assigned to cluster i. We define Cost(Pi, ci)
to be a function of {dist(x, ci)}x∈Pi

where the distance function is the distance in metric space
between a point and its respective cluster center.

1.2 Types of k-clustering

Below we give 4 types of k-clustering and their respective cost functions.

• k-center: Cost(X, C) = max
x∈X

dist(x, C)

• k-median: Cost(X, C) = ∑
x∈X dist(x, C)

• k-means: Cost(X, C) = ∑
x∈X (dist(x, C))2

• (k, z)-clustering: Cost(X, C) = ∑
x∈X (dist(x, C))z

For our cases, we apply Euclidean k-clustering which means that our distance function is measured
as the Euclidean distance in d dimensions.

dist(x, y) =
√

(x1 − y1)2 + ... + (xd − yd)2

1.3 Coreset

Definition (Coreset). Subset X ′ of representative points of X for a specific clustering objective
where the Cost(X, C) ≈ Cost(X ′, C) for all sets C with |C| = k
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More formally, given a set X and an accuracy parameter ε > 0, we say a set X ′ with weight function
w is a (1 + ε)-multiplicative coreset for a cost function Cost, if for all queries C with |C| = k, we
have:

(1 − ε) Cost(X, C) ≤ Cost(X ′, C, w) ≤ (1 + ε) Cost(X, C)

2 Clustering in the Streaming Model

Clustering in the streaming model can be solved with the merge-and-reduce framework. For now,
we assume that we have an algorithm for (1 + ε)-coreset construction that uses f(k, 1

ε ) weighted
input points.

2.1 Merge-and-Reduce

The merge-and-reduce framework is outlined below.

1. Partition the stream into blocks containing f(k, log n
ε )

2. Create a (1 + ε
log n)-coreset for each block

3. Create a (1 + ε
log n)-coreset for the set of points formed by the union of two coresets for each

block

Step 3 is repeated on multiple levels until we end up with a single coreset. The algorithm is
named "merge-and-reduce" because the repeated, basic building block of the algorithm is this: two
(1 + ε

log n)-coresets are merged and then reduced into a single (1 + ε
log n)-coreset.

2.2 Analysis

Since there are O(log n) levels and each coreset is a (1 + ε
log n)-coreset of two coresets, we end up

with a single coreset with a total approximation of (1 + ε
log n)log n = (1 + O(ε)).

Because every pair of coresets are merged and reduced, the memory requirement for merge-and-reduce
is bounded by O(log n).
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