CSCE 689: Special Topics in Modern Algorithms for Data Science Fall 2023
Lecture 23 - October 25, 2023
Prof. Samson Zhou

Recall

Theorem 1 (Bernstein's Inequality). Let $y_{1}, \ldots, y_{n} \in[-M, M]$ be independent random variables and let $y=y_{1}+\ldots+y_{n}$ have mean μ and variance σ^{2}. Then for any $t \geq 0$:

$$
\operatorname{Pr}[|y-\mu| \geq t] \leq 2 e^{-\frac{t^{2}}{2 \sigma^{2}+\frac{4}{3} M t}}
$$

Sampling for Sum Estimation

Goal: Approximate the original sum by the sum of the rescaled sampled numbers.
Consider a fixed set $X=\left\{x_{1}, \ldots, x_{n}\right\}$ of n numbers, and suppose we sample each point x_{i} with some probability p_{i} and rescale by $\frac{1}{p_{i}}$, also we let y_{i} be the contribution of the sample corresponding to x_{i}, we have:

- $y_{i}=0$ with probability $1-p_{i}$
- $y_{i}=\frac{1}{p_{i}} \cdot x_{i}$ with probability p_{i}
- $\mathbb{E}\left[y_{i}\right]=x_{i}$
- Expected sum: $\mathbb{E}\left[y_{1}+\ldots+y_{n}\right]=x_{1}+\ldots+x_{n}$

Uniform Sampling

Suppose $p_{i}=p$ for all $i \in[n]$, given Theorem 1, if $x_{1}=\ldots=X_{n}=1$, set $M=\frac{1}{p}, t=\frac{n}{2}$, and $\sigma^{2}=\frac{n}{p}$, then:

$$
\operatorname{Pr}\left[|y-\mu| \geq \frac{n}{2}\right] \leq 2 \exp \left(-\frac{(n / 2)^{2}}{2(n / p)+(4 / 3)(n / 2 p)}\right)
$$

We require $2\left(\frac{n}{p}\right) \approx\left(\frac{n}{2}\right)^{2}$, so we need $p=\Theta\left(\frac{1}{n}\right)$.
If $x_{1}, \ldots, x_{n} \in[1,2]$, set $M=\frac{2}{p}, t=\frac{x}{2}$ and $\sigma^{2} \approx \frac{4 n}{p}$, then:

$$
\operatorname{Pr}\left[|y-\mu| \geq \frac{x}{2}\right] \leq 2 \exp \left(-\frac{(x / 2)^{2}}{2(4 n / p)+(4 / 3)(x / p)}\right)
$$

We require $2\left(\frac{4 n}{p}\right) \approx \frac{x}{2}$ and x can be as small as n, so $p \approx \frac{2}{n}$.
If $x_{1}, \ldots, x_{n} \in[1,100]$, set $M=\frac{100}{p}, t=\frac{x}{2}$ and $\sigma^{2} \approx \frac{10000 n}{p}$, then:

$$
\operatorname{Pr}\left[|y-\mu| \geq \frac{x}{2}\right] \leq 2 \exp \left(-\frac{(x / 2)^{2}}{2(10000 n / p)+(4 / 3)(100 x / p)}\right)
$$

We require $2\left(\frac{10000 n}{p}\right) \approx \frac{x}{2}$ and x can be as small as n, so $p \approx \frac{80000}{n}$.
If $x_{1}, \ldots, x_{n} \in[1, n]$, set $M=\frac{n}{p}, t=\frac{x}{2}$ and $\sigma^{2} \approx \frac{n^{2}}{p}$, then:

$$
\operatorname{Pr}\left[|y-\mu| \geq \frac{x}{2}\right] \leq 2 \exp \left(-\frac{(x / 2)^{2}}{2\left(n^{2} / p\right)+(4 / 3)(n x / 2 p)}\right)
$$

We require $2\left(\frac{n^{2}}{p}\right) \approx \frac{x}{2}$ and x can be as small as n, so we need $p \approx 1$.
To sum up:

Domain of x_{1}, \ldots, x_{n}	Conditions of p for 2-approximation	Expected samples amount
$x_{1}=\ldots=x_{n}=1$	$p=\Theta\left(\frac{1}{n}\right)$	$n p=\Theta(1)$
$x_{1}, \ldots, x_{n} \in[1,2]$	$p \approx \frac{2}{n}$	slightly larger $n p$
$x_{1}, \ldots, x_{n} \in[1,100]$	$p \approx \frac{80000}{n}$	way larger $n p$
$x_{1}, \ldots, x_{n} \in[1, n]$	$p \approx 1$	n

Table 1: Uniform Sampling Summary

Importance Sampling

Suppose $x=x_{1}+\ldots+x_{n}$, since p_{i} is chosen proportionally to x_{i}, let $p_{i}=\frac{x_{i}}{x}$, we have $y_{i} \leq \frac{1}{p} \cdot x_{i}=$ $\frac{x}{x_{i}} \cdot x_{i}=x$, thus:

- $\operatorname{Var}\left[y_{i}\right] \leq \frac{1}{p_{i}} x_{i}^{2} \leq x_{i} \cdot x$
- $\operatorname{Var}[y]=\operatorname{Var}\left[y_{1}\right]+\ldots+\operatorname{Var}\left[y_{n}\right] \leq x \cdot\left(x_{1}+\ldots+x_{n}\right)=x^{2}$

Given Theorem 1, set $M=x, t=\frac{x}{2}$, and $\sigma^{2} \approx x^{2}$. Then

$$
\operatorname{Pr}\left[|y-\mu| \geq \frac{x}{2}\right] \leq 2 \exp -\frac{(x / 2)^{2}}{2 x^{2}+(4 / 3)\left(x^{2} / 2\right)}
$$

Suppose $x_{1}, \ldots, x_{n} \in[1, n]$, we can get a 2-approximation and based on $\frac{x_{1}}{x}+\ldots+\frac{x_{n}}{x}=1$, we expect a constant number of samples.

