CSCE 689: Special Topics in Modern Algorithms for Data Science Fall 2023

Prof. Samson Zhou

Scribe: Ayesha Qamar

1 Recall

Theorem 1 (Bernstein's inequality). Let $y_1, ..., y_n \in [-M, M]$ be independent random variables and let $y_1, ..., y_n$ have mean μ and variance σ^2 . Then for any $t \geq 0$: $Pr[||y - \mu| \geq t] \leq 2e^{-\frac{t^2}{2\sigma^2 + \frac{4}{3}Mt}}$.

2 Coreset Construction

Given a fixed set X and a fixed set C of k centers, which induces a fixed cost Cost(X, C). The goal is to find X' with $Cost(X', C) \approx Cost(X, C)$.

2.1 Uniform Sampling

Uniformly sample points from X to obtain X'.

If all points x have the same cost as $\mathrm{Cost}(x,C) = \frac{\mathrm{Cost}(X,C)}{n}$, then following Theorem 1 to get a 2-approximation, set $M = \frac{1}{p}, t = \frac{1}{2}.\mathrm{Cost}(X,C)$ and $\sigma^2 \approx \frac{n}{p}$ for $x = \mathrm{Cost}(X,C)$, so that

$$\Pr\left[|y-\mu| \ge \frac{x}{2}\right] \le 2\exp\left(-\frac{\left(\frac{x}{2}\right)^2}{2\left(\frac{4n}{p}\right) + \left(\frac{4}{3}\right)\left(\frac{x}{p}\right)}\right).$$

We need $\frac{8n}{p} \approx (\frac{x}{2})^2$ and x can be as small as n, so 2-approximation to $\operatorname{Cost}(X,C)$ is possible for $p = \Theta(1/n)$ and number of samples $np = \Theta(1)$.

Suppose all points have cost $\in [1, 100]$ and $p_i = p$ for all $i \in [n]$, set $M = \frac{100}{p}$, $t = \frac{1}{2}.\text{Cost}(X, C)$, $\sigma^2 \approx \frac{10000n}{p}$, and x = Cost(X, C)

$$\Pr\left[|y - \mu| \ge \frac{x}{2}\right] \le 2 \exp\left(-\frac{\left(\frac{x}{2}\right)^2}{2\left(\frac{10000n}{p}\right) + \left(\frac{4}{3}\right)\left(\frac{50x}{p}\right)}\right).$$

We need $\frac{20000n}{p} \approx (\frac{x}{2})^2$ and x can be as small as n, so we need $p \approx \frac{80000}{n}$.

Now suppose all points have cost between 1 and n. To approximate cost within $(1 + \varepsilon)$ -factor, set $M = \frac{n}{p}, t = \frac{x}{2}, \ \sigma^2 \approx \frac{n^2}{p}$ then

$$\Pr\left[|y - \mu| \ge \frac{x}{2}\right] \le 2 \exp\left(-\frac{(\frac{x}{2})^2}{2(\frac{n^2}{p}) + (\frac{4}{3})(\frac{nx}{2p})}\right).$$

We need $\frac{2n^2}{p} \approx (\frac{x}{2})^2$ and x can be as small as n, so we need $p \approx 1$.

Therefore, uniform sampling needs a lot of samples if there is an outlier present in the data—i.e., if one point affects Cost(X, C) greatly.

2.2 Importance Sampling

Let y_i be the contribution of x_i when it is sampled with probability p_i , so that

$$y_i = \begin{cases} 0, & \text{w.p. } 1 - p_i \\ \frac{\text{Cost}(x_i, C)}{p_i}, & \text{w.p. } p_i \end{cases} = \frac{\text{Cost}(x_i, C)}{p_i}.$$

Observe that:

- $\operatorname{Var}[y_i] \leq \frac{1}{p_i} \cdot (\operatorname{Cost}(x_i, C))^2 \leq \operatorname{Cost}(x_i, C) \cdot \operatorname{Cost}(X, C)$ $\operatorname{Var}[y] \leq \operatorname{Var}[y_1] + \dots + \operatorname{Var}[y_n] \leq (\operatorname{Cost}(x_i, C))^2$

Thus we have:

$$\mathbb{E}[\text{Cost}(y_i, C)^2] = \begin{cases} \frac{\text{Cost}(x_i, C)^2}{p_i^2}, & \text{w.p. } p_i \\ 0, & \text{w.p. } 1 - p_i \end{cases} = \frac{\text{Cost}(x_i, C)^2}{p_i} = \text{Cost}(X, C).\text{Cost}(x_i, C)$$

Importance sampling only needs $X^{'}$ to have size $O(\frac{1}{\varepsilon^2})$ in expectation to achieve $(1+\varepsilon)$ -approximation to Cost(X, C)

Definition. A net N is a set of sets C of k centers such that accuracy on N implies accuracy everywhere

In order to handle all possible k centers, sample each point x with probability $\max_{C} \frac{\text{Cost}(x,C)}{\text{Cost}(X,C)}$. Need to union bound over a net of all possible sets of k centers with a net size of $(\frac{n\Delta}{\varepsilon})^{O(kd)}$

Sensitivity Sampling 2.2.1

The quantity $s(x) = \max_{C} \frac{\mathrm{Cost}(x,C)}{\mathrm{Cost}(X,C)}$ is called the sensitivity of x and intuitively measures how important the point x is. The total sensitivity of X is $\sum_{x \in X} s(x)$ and quantifies how many points will be sampled into X' through sensitivity sampling.