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0.1 Overview of Linear Regression

This class extensively covers basic linear algebra concepts and their applications in regression.
Regression, a crucial component of supervised learning, involves matrix A, representing n observations
with d features, and matrix b, denoting outcome labels for each observation. The primary goal is to
find the vector x such that Ax = b.

0.2 Motivation for Linear Regression

The discussion explores motivations for using linear regression models, emphasizing their significance
in prediction and causal inference. For instance, in healthcare, regression aids in predicting the
length of patient hospital stays (prediction) and understanding why patients require prolonged
hospitalization (causal inference). Similarly, in economics and finance, linear models are employed
to forecast stock prices based on historical data and relevant factors.

0.3 Regression Applications in Various Fields

Regression techniques find extensive applications in diverse fields. They aid in analyzing relationships
between factors in medical research, predicting diseases based on risk factors like smoking or diet, and
supporting insurance decisions for better patient care. Additionally, in sports analytics, regression
models enable the forecasting of player performance or game outcomes based on historical data.
Moreover, regression is instrumental in natural sciences for climate modeling to predict changes in
temperature or sea level and analyzing relationships between pollution levels and industrial activity.

0.4 Conditions for Solving Ax = b

In the class discussion, we dive into understanding the prerequisites for solving equations in the
form of Ax = b. This equation represents a system where matrix multiplication (A) applied to
an unknown vector (x) results in a known outcome vector (b). However, finding x isn’t always
straightforward.

Consider a scenario where the system is inconsistent, meaning there’s no valid solution. Take the
example:

X1 + 2X2 = 1
X1 + 3X2 = 1
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In this case, the equations lead to contradictory results, showing that there’s no solution for X1 and
X2 that satisfies both equations simultaneously.

Determining the system’s consistency involves examining the rank of two critical matrices: the
coefficient matrix A and the augmented matrix formed by combining A with vector b. If matrix A
is square (n × n) and is full rank (its rank equals its dimension, i.e., rank A = n), then A possesses
an inverse A−1 such that AA−1 = A−1A = In, where In is the identity matrix of order n.

For a general matrix A with linearly independent columns (n × d), the Moore-Penrose inverse or
pseudoinverse (A†) of A is defined such that A† = AT (AAT )−1A and satisfies A†A = Id, where Id is
the identity matrix of order d.

When n = d, indicating a square matrix, there exists a unique solution, expressed as x = A−1b.
However, if n < d, the system might have infinite solutions. For instance, in the equation X1+X2 = 1,
there are infinite possible combinations of X1 and X2 that satisfy the equation.

In cases where no solution exists for finding x to satisfy Ax = b, linear regression comes into play.
This regression aims to minimize the error between Ax and b by choosing x that minimizes this
discrepancy, typically through least squares optimization using norms like the l2 norm.

For example, let’s consider the matrix A =
[
1 1
1 1

]
and b =

[
0
1

]
. In this scenario, A doesn’t possess

an inverse (A−1), indicating an inconsistent system and thus no valid solution for Ax = b.

This understanding underscores the importance of examining the system’s properties and structure
to determine the feasibility and existence of a solution in solving equations of the form Ax = b.

0.5 Linear Regression and Optimization

In the context of Ax = b, the objective is to minimize the problem L(Ax − b) for some selected
loss function L, where Ax = b. Typically, the two-norm ∥Ax − b∥2 is employed in least squares
optimization to fit a line through a set of points as closely as possible. This method involves
minimizing the error, which is highly sensitive to outliers when using the two-norm. The discussion
further emphasizes the statistical and mathematical trade-offs between the two-norm and the
one-norm.

0.6 Projection and Solution

To address Ax = b where x is unknown, the class delves into projecting b onto the column space of
A. It decomposes b into its components b⊥ and b∥. Minimizing ||Ax − b||22 yields unique solutions.
The discussion encompasses solutions for both L2 and L1 norms, illustrating that a closed-form
solution for L1 is not available.

0.7 Conclusion

While the L2 norm provides a solution in the form x = A†b∥, the L1 norm does not have a closed-form
solution.
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