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Prof. Samson Zhou Scribe: Tzu-Shen (Jason), Wang

1 Review

Linear algebra review. For y = Az, we have y; = (a;,z), where A € R™*? and x € R¥*!

Recall the following formulation of Bernstein’s inequality:

Theorem 1 (Bernstein’s inequality). Let yi,...,yn € [—M, M] be independent random variables
and let y = y1 + ... + yn have mean p and variance o2. Then for any t > 0, we have:
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1
Coreset construction and sampling. Importance sampling only O (2> samples to achieve
€

(1 + e)-approximation to Cost(X,C).
To handle all possible sets of k£ centers:

Cost(z,C) nstead of Cost(z,C)

e Need to sample each point x with probability max¢ m m
0s , (& )

nA)O(kd)

e Need to union bound over a net of all possible sets of k centers, where Net with size <
€

2 Subspace Embedding
Definition (Subspace embedding). Given matrix A € R™ 4 a subspace embedding is a matrix
M € R™*? with m < n, such that for every z € R? we have:

(I —e)[[Azllz < [|Mzllz < (14 ¢)||Az]]2.

Claim 1. Subspace embeddings can be used to approximately solve linear regression

Recall that a regression is to find x that minimize ||Az — b||2

We show how to utilize subspace embedding to solve approximate regression. Observe that we can
set B to be equal to the matrix A concatenated with the column vector b, and append —1 to the
last row of z.



ie. B=[A]|b],y= [_xl],soBy:Aac—b.
By computing a subspace embedding for B, we have M € R™*? where for every y we have
(1 =9)lIByllz < [[Myll2 < (1 +)[|Byll2.

Then we use solve approximate regression by solving the regression problem given M and b, so that
the answer is a e-approximation by the guarantee of the subspace sampling problem (for every y we
have (1 —e¢)[| Byl < [[Myll2 < (1 4 ¢)[[Byll2)-

2.1 Intuition of using subspace embedding to solve approximate regression
problem

One can solve the regression problem by computing x as Afb. However, since A € R™? and
b € R¥1 it takes time ©(nd?) using naive matrix multiplication. Whereas subspace embedding
gives a matrix M € R™*? where m < n, the time complexity is reduced to ©(md?).

2.2 Solving subspace embedding:

Consider a fixed z € R?, which induces cost ||Az||3. We intend to find matrix M € R™*9 with
m < n, s.t for every x € RY,

(1 =)l Azlls < [|Mz[l2 < (1 +¢)[|Az]l2.

2

Uniform sampling. In asimple case: Suppose all rows induce the same cost (a1, 2)2, (a2, )2, ..., {(an, )2

Then we can use uniform sampling, each row will be sampled by a probability of p =0 [ — |. And
n

the expected number of samples are np = ©O(1), which is only a constant number of samples.

However, if we consider all rows have cost between 1 and n and suppose each row i is still sampled

2n? Ax|2?

with the same probability, i.e., p; = p, then by Bernstein’s equality, we might need — =~ ” 5 I
p

and ||Az||3 can be as small as n. Thus we need p ~ 1, so we sample approximately ©(n) rows.

1
Coreset construction and sampling. Importance sampling only needs M to have O <2) TOWS
€

to achieve (1 + ¢)-approximation to ||Az||3
However to handle all possible z € R%:

<ai7x>2
| Az|f3

2
a;, )~ .
e Need to sample row a; with probability max, cgd <”;1‘>2 instead of just
P

e Need to union bound over all 2 € R?
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Leverage scores Intuition: how unique a row is ¢; = max,cga W is the leverage score of
Zll2

row a; in A.

Example 1. E.g., For A = H f]

o If we take z = (1, —1) then ¢; =1 (row 1 contributes all, so we must pick row 1)

o If we take z = (0,1) then ¢, =1

It is known that ¢; = a;(AT A)~ta,, so that %¢; = d, we expect to sample d rows, where d < n.
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