CSCE 689: Special Topics in Modern Algorithms for Data Science Fall 2023
Lecture 31 - November 13, 2023
Prof. Samson Zhou
Scribe: Tzu-Shen (Jason), Wang

## 1 Review

Linear algebra review. For $y=A x$, we have $y_{i}=\left\langle a_{i}, x\right\rangle$, where $A \in R^{n \times d}$ and $x \in R^{d \times 1}$
Recall the following formulation of Bernstein's inequality:
Theorem 1 (Bernstein's inequality). Let $y_{1}, \ldots, y_{n} \in[-M, M]$ be independent random variables and let $y=y_{1}+\ldots+y_{n}$ have mean $\mu$ and variance $\sigma^{2}$. Then for any $t \geq 0$, we have:

$$
\operatorname{Pr}[|y-\mu| \geq t] \leq 2 e^{-\frac{t^{2}}{2 \sigma^{2}+\frac{4}{3} M t}}
$$

Coreset construction and sampling. Importance sampling only $O\left(\frac{1}{\varepsilon^{2}}\right)$ samples to achieve $(1+\varepsilon)$-approximation to $\operatorname{Cost}(X, C)$.
To handle all possible sets of $k$ centers:

- Need to sample each point $x$ with probability $\max _{C} \frac{\operatorname{Cost}(x, C)}{\operatorname{Cost}(X, C)}$ instead of $\frac{\operatorname{Cost}(x, C)}{\operatorname{Cost}(X, C)}$
- Need to union bound over a net of all possible sets of k centers, where Net with $\operatorname{size}\left(\frac{n \Delta}{\varepsilon}\right)^{O(k d)}$


## 2 Subspace Embedding

Definition (Subspace embedding). Given matrix $A \in R^{n \times d}$, a subspace embedding is a matrix $M \in R^{m \times d}$, with $m \ll n$, such that for every $x \in \mathbb{R}^{d}$, we have:

$$
(1-\varepsilon)\|A x\|_{2} \leq\|M x\|_{2} \leq(1+\varepsilon)\|A x\|_{2} .
$$

Claim 1. Subspace embeddings can be used to approximately solve linear regression

Recall that a regression is to find x that minimize $\|A x-b\|_{2}$
We show how to utilize subspace embedding to solve approximate regression. Observe that we can set $B$ to be equal to the matrix $A$ concatenated with the column vector $b$, and append -1 to the last row of $x$.
i.e. $B=[A \mid b], y=\left[\begin{array}{c}x \\ -1\end{array}\right]$, so $B y=A x-b$.

By computing a subspace embedding for $B$, we have $M \in \mathbb{R}^{m \times d}$, where for every $y$ we have

$$
(1-\varepsilon)\|B y\|_{2} \leq\|M y\|_{2} \leq(1+\varepsilon)\|B y\|_{2} .
$$

Then we use solve approximate regression by solving the regression problem given $M$ and $b$, so that the answer is a $\varepsilon$-approximation by the guarantee of the subspace sampling problem (for every $y$ we have $\left.(1-\varepsilon)\|B y\|_{2} \leq\|M y\|_{2} \leq(1+\varepsilon)\|B y\|_{2}\right)$.

### 2.1 Intuition of using subspace embedding to solve approximate regression problem

One can solve the regression problem by computing $x$ as $A^{\dagger} b$. However, since $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^{d \times 1}$, it takes time $\Theta\left(n d^{2}\right)$ using naive matrix multiplication. Whereas subspace embedding gives a matrix $M \in \mathbb{R}^{m \times d}$, where $m \ll n$, the time complexity is reduced to $\Theta\left(m d^{2}\right)$.

### 2.2 Solving subspace embedding:

Consider a fixed $x \in \mathbb{R}^{d}$, which induces cost $\|A x\|_{2}^{2}$. We intend to find matrix $M \in \mathbb{R}^{m \times d}$, with $m \ll n$, s.t for every $x \in R^{d}$,

$$
(1-\varepsilon)\|A x\|_{2} \leq\|M x\|_{2} \leq(1+\varepsilon)\|A x\|_{2} .
$$

Uniform sampling. In a simple case: Suppose all rows induce the same cost $\left\langle a_{1}, x\right\rangle^{2},\left\langle a_{2}, x\right\rangle^{2}, \ldots,\left\langle a_{n}, x\right\rangle^{2}$. Then we can use uniform sampling, each row will be sampled by a probability of $p=\Theta\left(\frac{1}{n}\right)$. And the expected number of samples are $n p=\Theta(1)$, which is only a constant number of samples. However, if we consider all rows have cost between 1 and $n$ and suppose each row $i$ is still sampled with the same probability, i.e., $p_{i}=p$, then by Bernstein's equality, we might need $\frac{2 n^{2}}{p} \approx \frac{\|A x\|_{2}^{2}}{2}$ and $\|A x\|_{2}^{2}$ can be as small as $n$. Thus we need $p \approx 1$, so we sample approximately $\Theta(n)$ rows.

Coreset construction and sampling. Importance sampling only needs $M$ to have $O\left(\frac{1}{\varepsilon^{2}}\right)$ rows to achieve $(1+\varepsilon)$-approximation to $\|A x\|_{2}^{2}$
However to handle all possible $x \in \mathbb{R}^{d}$ :

- Need to sample row $a_{i}$ with probability $\max _{x \in \mathbb{R}^{d}} \frac{\left\langle a_{i}, x\right\rangle^{2}}{\|A x\|_{2}^{2}}$ instead of just $\frac{\left\langle a_{i}, x\right\rangle^{2}}{\|A x\|_{2}^{2}}$
- Need to union bound over all $x \in \mathbb{R}^{d}$

Leverage scores Intuition: how unique a row is $\ell_{i}=\max _{x \in \mathbb{R}^{d}} \frac{\left\langle a_{i}, x\right\rangle^{2}}{\|A x\|_{2}^{2}}$ is the leverage score of row $a_{i}$ in $A$.

Example 1. E.g., For $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1 .\end{array}\right]$ :

- If we take $x=(1,-1)$ then $\ell_{1}=1$ (row 1 contributes all, so we must pick row 1 )
- If we take $x=(0,1)$ then $\ell_{2}=1$

It is known that $\ell_{i}=a_{i}\left(A^{\top} A\right)^{-1} a_{i}^{\top}$, so that $\Sigma \ell_{i}=d$, we expect to sample $d$ rows, where $d \ll n$.

