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1 Review

Linear algebra review. For y = Ax, we have yi = ⟨ai, x⟩, where A ∈ Rn×d and x ∈ Rd×1

Recall the following formulation of Bernstein’s inequality:

Theorem 1 (Bernstein’s inequality). Let y1, ..., yn ∈ [−M, M ] be independent random variables
and let y = y1 + ... + yn have mean µ and variance σ2. Then for any t ≥ 0, we have:

Pr[|y − µ| ≥ t] ≤ 2e

−
t2

2σ2 + 4
3Mt

Coreset construction and sampling. Importance sampling only O

( 1
ε2

)
samples to achieve

(1 + ε)-approximation to Cost(X, C).
To handle all possible sets of k centers:

• Need to sample each point x with probability maxC
Cost(x, C)
Cost(X, C) instead of Cost(x, C)

Cost(X, C)

• Need to union bound over a net of all possible sets of k centers, where Net with size
(

n∆
ε

)O(kd)

2 Subspace Embedding

Definition (Subspace embedding). Given matrix A ∈ Rn×d, a subspace embedding is a matrix
M ∈ Rm×d, with m ≪ n, such that for every x ∈ Rd, we have:

(1 − ε)∥Ax∥2 ≤ ∥Mx∥2 ≤ (1 + ε)∥Ax∥2.

Claim 1. Subspace embeddings can be used to approximately solve linear regression

Recall that a regression is to find x that minimize ∥Ax − b∥2
We show how to utilize subspace embedding to solve approximate regression. Observe that we can
set B to be equal to the matrix A concatenated with the column vector b, and append −1 to the
last row of x.
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i.e. B = [A | b], y =
[

x
−1

]
, so By = Ax − b.

By computing a subspace embedding for B, we have M ∈ Rm×d, where for every y we have

(1 − ε)∥By∥2 ≤ ∥My∥2 ≤ (1 + ε)∥By∥2.

Then we use solve approximate regression by solving the regression problem given M and b, so that
the answer is a ε-approximation by the guarantee of the subspace sampling problem (for every y we
have (1 − ε)∥By∥2 ≤ ∥My∥2 ≤ (1 + ε)∥By∥2).

2.1 Intuition of using subspace embedding to solve approximate regression
problem

One can solve the regression problem by computing x as A†b. However, since A ∈ Rn×d and
b ∈ Rd×1, it takes time Θ(nd2) using naive matrix multiplication. Whereas subspace embedding
gives a matrix M ∈ Rm×d, where m ≪ n, the time complexity is reduced to Θ(md2).

2.2 Solving subspace embedding:

Consider a fixed x ∈ Rd, which induces cost ∥Ax∥2
2. We intend to find matrix M ∈ Rm×d, with

m ≪ n, s.t for every x ∈ Rd,

(1 − ε)∥Ax∥2 ≤ ∥Mx∥2 ≤ (1 + ε)∥Ax∥2.

Uniform sampling. In a simple case: Suppose all rows induce the same cost ⟨a1, x⟩2, ⟨a2, x⟩2, ..., ⟨an, x⟩2.
Then we can use uniform sampling, each row will be sampled by a probability of p = Θ

( 1
n

)
. And

the expected number of samples are np = Θ(1), which is only a constant number of samples.
However, if we consider all rows have cost between 1 and n and suppose each row i is still sampled

with the same probability, i.e., pi = p, then by Bernstein’s equality, we might need 2n2

p
≈ ∥Ax∥2

2
2

2

and ∥Ax∥2
2 can be as small as n. Thus we need p ≈ 1, so we sample approximately Θ(n) rows.

Coreset construction and sampling. Importance sampling only needs M to have O

( 1
ε2

)
rows

to achieve (1 + ε)-approximation to ∥Ax∥2
2

However to handle all possible x ∈ Rd:

• Need to sample row ai with probability maxx∈Rd

⟨ai, x⟩2

∥Ax∥2
2

instead of just ⟨ai, x⟩2

∥Ax∥2
2

• Need to union bound over all x ∈ Rd
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Leverage scores Intuition: how unique a row is ℓi = maxx∈Rd

⟨ai, x⟩2

∥Ax∥2
2

is the leverage score of
row ai in A.

Example 1. E.g., For A =
[
1 0
1 1.

]
:

• If we take x = (1, −1) then ℓ1 = 1 (row 1 contributes all, so we must pick row 1)

• If we take x = (0, 1) then ℓ2 = 1

It is known that ℓi = ai(A⊤A)−1a⊤
i , so that Σℓi = d, we expect to sample d rows, where d ≪ n.
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