
CSCE 689: Special Topics in Modern Algorithms for Data Science Fall 2023

Lecture 33 — November 17, 2023
Prof. Samson Zhou Scribe: Ryan King

1 Differential Privacy

From the last lecture we have that given ε > 0 and δ ∈ (0, 1), a randomized algorithm A : U∗ → Y
is (ε, δ)-differentially private if, for every neighboring frequency vectors f and f ′ and for all E ⊆ Y ,

Pr[A(f) ∈ E] ≤ eε · Pr[A(f ′) ∈ E] + δ

Intuitively, this means that the algorithm A should produce a similar output if a neighboring element
of f is selected instead. For small ε, we can think of eε as 1 + ε or

Pr[A(f) ∈ E] ≤ (1 + ε) · Pr[A(f ′) ∈ E] + δ

An implication of this is that a deterministic algorithm cannot be differentially private unless they
are a constant function.

2 Differential Privacy Properties

What properties would we we like from a rigorous definition of privacy? One property we would like
is for privacy loss measures ε to accumulate across multiple computations and dataset. If mechanism
M1 has privacy loss ε1 and mechanism M2 has privacy loss ε2, then releasing the results of both M1
and M2 has a privacy loss of ε1 + ε2.

We also like to have the ability to handle post-processing. If a mechanism M1 has privacy loss of ε1
and we release f(M1), then we have privacy loss ε1.

3 Example Problem

Let’s create an example problem. Let’s start by asking how many people in a group have a pet?
What happens if each person answer with their truthful answer? We’d expect each person to give
us the right answer but now we have some privacy loss.

Instead, what would happen if each person flips a coin and answers based on the coin flip? Then
the answers aren’t useful since everyone answered randomly but the results are private.

Now, what happens if we combine the two approaches. Now each person will think of their home
address. If their address is even then they will answer truthfully, otherwise they will think of their
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phone number and answer yes if it is even and no otherwise. Now we have some truth and some
randomness but how do we estimate the true number if we use this method?

For any person i, let Xi ∈ {0, 1} be the true answer and let Yi ∈ {0, 1} be the reported answer. In
our example above we have that:

Pr[Yi = Xi] = 3
4

Pr[Yi = 1 − Xi] = 1
4

E[Yi] = 3
4 · Xi + 1

4 · (1 − Xi) = Xi

2 + 1
4

Let Y = Y1+···+Yn
n and X = X1+···+Xn

n

E[Yi] = X

2 + 1
4

Report 2(Y − 1
4) for the true fraction.

4 Randomized Response

The example above is called randomized response. In the example, we have the Pr[Yi = 1|Xi = 1] = 3
4

and Pr[Yi = 1|Xi = 0] = 1
4 . Using the definition of (ε, δ)-differentially private, we can see that

Pr[Yi = 1|Xi = 0] ≤ 3 · Pr[Yi = 1|Xi = 1]

Pr[Yi = 1|Xi = 1] ≤ 3 · Pr[Yi = 1|Xi = 0]

so the privacy loss is ln(3)

5 Local Differential Privacy (LDP)

Given ε > 0 and δ ∈ (0, 1), a randomized algorithm A : U∗ → Y is (ε, δ)-differentially private if, for
every pairs of users’ possible data x and x′ and for all E ⊆ Y ,

Pr[A(x) ∈ E] ≤ eε · Pr[A(x′) ∈ E] + δ

Here this the algorithm takes a single user’s data compared to the previous definition of DP, where
the algorithm takes all users’ data.

A example of LDP is in Mobile Data Analytics where LDP can be applied to data collected from
mobile devices to allow analysis of aggregate movement patterns and trends without compromising
the privacy of individual users. Example of Mobile Data Analytics include location-based services
and user behavior analysis.
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6 Privacy and Noise

Our goal is to release a private approximation to f(x). The intuition is that f(x) can be released
accurately if the function f is not sensitive to changes by any of the individuals x = x1, · · · , xn. We
can measure the sensitivity of a pair of users using the following:

σf = max
neighborsx,x′

||f(x) = f(x′)||1

Suppose that a study is conducted that measures the height of individuals, ranging from 1 to 300
centimeters.

1. What is the sensitivity of the maximum height query? 300

2. What is the sensitivity of the average height query? 25

7 Laplace Mechanism

The goal of our algorithm is to compute f(x) and release f(x) + Z, where Z Lap(σf

ε ) where Lap is
a Laplacian distribution with a probability density function of:

p(x) = 1
2b

exp
(

−|x|
b

)
The Laplace mechanism is used here because it is ε-differentially private (pure DP).

8 Exponential Mechanism

What if the output is not a scalar, e.g. a vector? Suppose the outputs lie in some space Y . Or
suppose a study is conducted that finds the current location of individuals, in the two-dimensional
plane. Who is the closest individual to a query location? In these cases the Laplace mechanism
doesn’t work so we have to use an exponential mechanism. To use this mechanism we have to choose
a score function S : (Y, Xn) → R and a sensitivity σ. Sample y ∈ Y with probability proportional to

exp
(

ε

2σ
S(y, x)

)
The exponential mechanism is ε-differentially private (pure DP). In fact, when Y is the set of the
real numbers, there is a setting of the score function S for which the exponential mechanism reduces
to the Laplace mechanism. However, the sampling process may be inefficient.
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