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1 Markov’s Inequality

Theorem 1. Let X ≥ 0 be non-negative random variable. Then for any t > 0:

Pr[X ≥ t · E[X]] ≤ 1
t
.

Proof. By the definition of expectation of X, we have:

E[X] =
∑
x∈Ω

Pr[X = x] · x ≥
∑

x≥t·E[X]
Pr[X = x] · x

≥ t · E[X] ·
∑

x≥t·E[X]
Pr[X = x] = t · E[X] · Pr[X ≥ t · E[X]]

The claimed inequality then follows from dividing by sides by t · E[X]. ■

Comments about Markov’s inequality:

• Markov’s inequality bounds the probability that a random variable is “far away” from its
expectation;

• Markov’s inequality can not provide a tight bound, but it can help understand the guarantee
of random variables and thus randomized algorithms;

• Markov’s inequality also requires the assumption that the random variable X should be
non-negative.

2 Variance

In order to obtain a more tight estimate of the difference between variable X and its expect value
E[x] based on Markov’s inequality, we first introduce some notations and definitions about the
variance.

Definition. For p > 0, the p-th moment of a random variable X over its sample space Ω is

E[Xp] =
∑
x∈Ω

Pr[X = x] · xp.

The variance of a random variable over its sample space Ω is

V ar[X] = E[X2] − (E[X])2
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Obviously, the 1-th moment of the variable X is its expected value. The variance is defined in
terms of the variable’s 2-nd moment - (its 1-st moment)2. Additionally, the variance of X can be
rewritten as

V ar[X] = E[(X − E[X])2],

since

E[(X − E[X])2] = E[X2 − 2XE[X] + (E[X])2] = E[X2] − 2E[X]E[X] + (E[X])2 = E[X2] − (E[X])2.

Definition. The standard deviation of a random variable X is σ =
√

V ar[X].

Comments on the standard deviation and the variance:

• The standard deviation (also the variance) measures how far apart the outcomes are (although
the mean values of two different random variables might be identical, their variances (or
standard deviations) could substantially differ, e.g., X and Y such that Pr[X = 1] = Pr[X =
−1] = 1/2 and Pr[Y = 100] = Pr[Y = −100] = 1/2).

• The motivation to introduce standard deviation is that it is in the same unit as the data set.

• Linearity of variance for independent random variables: V ar[X + Y ] = V ar[X] + V ar[Y ].

• V ar[c · X] = c2 · V ar[X], where c is a constant (can be easily verified by the definition of the
variance).

3 Chebyshev’s Inequality

Since |X| ≥ t ⇐⇒ X2 ≥ t2, we have

Pr[|X| ≥ t] = Pr[X2 ≥ t2]

By Markov’s inequality, we know

Pr[|X| ≥ t] = Pr[X2 ≥ t2] ≤ E[X2]
t2 .

Plugging in X − E[X] for X, we can obtain

Pr[|X − E[X]| ≥ t] ≤ E[(X − E[X])2]
t2 .

By definition, the numerator in the right hand side of the above inequality is exactly the variance of
variable X. Thus, the above inequality measures the absolute difference between random variable
and its expectation in terms of its variance (deviation), which is known as Chebyshev’s Inequality
(as stated in the following Theorem 2).
Theorem 2. Let X be a random variable with expected value µ := E[X] and variance σ2 := V ar[X],
we have

Pr[|X − µ| ≥ kσ] ≤ 1
k2 .

Unlike Markov’s inequality, Chebyshev’s inequality does not require any assumption about the
random variable X.
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4 Law of Large Numbers

Suppose we have a distribution and seek to estimate its true mean through empirical sampling
(empirical mean), how accurate of an estimation can we achieve?

Let X1, · · · , Xn be random variables that are independent identically distributed (i.i.d) with mean
µ and variance σ2, and X = 1/n

∑
i Xi denote the sample average. By the linearity of expectation

and variance (for independent variables), we have

E[X] = E

[
1
n

∑
i

Xi

]
= 1

n
E

[∑
i

Xi

]
= µ,

and

V ar[X] = V ar

[
1
n

∑
i

Xi

]
= 1

n2

∑
i

V ar [Xi] = σ2

n
.

Thus, by Chebyshev’s inequality, we have

Pr[|X − µ| ≥ t] ≤ σ2

nt
,

which implies Pr[|X − µ| ≥ t] → 0 as n → 0 for all constant t > 0. Therefore we have the following
Theorem 3 which is known as Law of Large Numbers.

Theorem 3. [Informal] The sample average will always concentrate to the mean, given enough
samples.
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