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1 Concentration Inequalities and Moments

Definition. For p > 0, the p-th moment of a random variable X over Ω is:

E[Xp] =
∑
x∈Ω

Pr[X = x] · xp.

Examples of definitions related to moments include:

• expectation E[X] (1-st moment),

• variance E[X − E[X]]2 = E[X2] − (E[X])2 (related to 2-nd moment).

By using different moments, we can obtain different concentration inequalities. For instance,
Chebyshev’s inequality is proved by applying Markov’s inequality on the variance of the random
variable X − E[X]. In particular, Chebyshev’s inequality implies the Law of Large Numbers. Let
X1, ..., Xn be random variables that are independent identically distributed (i.i.d.) with mean µ
and variance σ2. Consider the sample average X = 1

n

∑
i Xi, we have that

V ar[X] = 1
n2

∑
i

V ar[Xi] = σ2

n
.

For any fixed parameter ε, if we apply the Chebyshev’s inequality on X,

Pr(|X − µ| > ε) ≤ V ar[X]
ε2 = σ2

nε2 .

When n goes to infinity, we have that the probability of the difference between the sample average
and the mean being larger than ε becomes arbitrarily small. This implies

Theorem 1 (Law of Large Numbers, informal). The sample average will always concentrate to the
mean, given enough samples.

2 Practical Examples and Accuracy Boosting

Suppose we design a randomized algorithm A to estimate a hidden statistic Z of a dataset and we
know 0 < Z ≤ 1000. Each time we use the algorithm A, it outputs a number X such that E[X] = Z
and V ar[X] = 100Z2. Then by applying Chebyshev’s inequalities, we have

Pr(|X − Z| > 30Z) ≤ V ar[X]
900Z2 = 1

9 .
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Since Z ≤ 1000, it holds that

Pr(|X − Z| < 30000) = 1 − Pr(|X − Z| ≥ 30000)

≥ 1 − Pr(|X − Z| > 30Z) = 8
9 .

Then we get the additive error is at most 30000 with high probability. However, in many real-world
applications, we would like to propose algorithms with small parameterizable additive error ε. How
can we achieve that?

2.1 Accuracy Boosting

If we repeat A a total of 1012

ε2 times and take the average, then the variance of the average is ε2

1010 Z2

and by Chebyshev’s inequalities, we have

Pr[|X − Z| ≥ ε] ≤ Z2

1010 .

Since Z ≤ 1000, we prove that

Pr[|X − Z| ≥ ε] ≤ 0.0001.

This instance implies the accuracy boosting method. To improve the accuracy of your algorithm,
we can run it many times independently and take the average.

3 More Powerful Concentration Inequalities.

However, the concentration inequalities discussed before has limitations on the tightness of the
bound. For example, suppose we flip a fair coin n = 100 times and let H be the total number of
heads. Then it holds that

E[H] = 50 and V ar[H] = 25.

If we apply Markov’s inequality, then we have

Pr[H ≥ 60] ≤ 0.833.

If we apply Chebyshev’s inequality, then we have

Pr[H ≥ 60] ≤ 0.25.

Recall that Chebyshev’s inequality is proved by applying Markov to the second moment of the
random variable X − E[X], i.e.,

Pr[|X − E[X]| ≥ t] = Pr[|X − E[X]|2 ≥ t2] ≤ V ar[X]
t2 .

By using the similar tricks on the 4-th moment, we obtain that

Pr[H ≥ 60] ≤ 0.186,
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which is tighter than the previous bound. However, the true value of the probability is Pr[H ≥
60] ≈ 0.0284. By looking at the k-th moment for sufficiently high k gives a number of very strong
(and useful!) concentration inequalities with exponential tail bounds. Examples of exponential
tail bounds include Chernoff bounds, Bernstein’s inequality, Hoeffding’s inequality, etc. Below we
introduce Bernstein’s inequality.

Theorem 2. Let X1, ...Xn ∈ [−M, M ] be independent random variables and let X = X1 + ... + Xn

have mean µ and variance σ2. Then for any t ≥ 0,

Pr[|X − µ| ≥ t] ≤ 2e
− t2

2σ2+ 4
3 Mt .

Suppose M = 1 and let t = kσ, then

Pr[|X − µ| ≥ kσ] ≤ 2 exp (−k2

4 ).

However, Chebyshev’s inequality gives

Pr[|X − µ| ≥ kσ] ≤ 1
k2 .

By comparing Bernstein’s inequality and Chebyshev’s inequality, we can see an exponential im-
provement by Bernstein’s inequality. If we depict the tail bound of exp (−k2

4 ) across different values
of k, we would get a plot that is similar to the normal random variable, which is consistent with the
result of the central limit theorem.

Theorem 3 (Stronger Central Limit Theorem, informal). The distribution of the sum of n bounded
independent random variables converges to a Gaussian (normal) distribution as n goes to infinity.

The theorem is very important since many random variables can be approximated as the sum of
a large number of small and roughly independent random effects. Thus, their distribution looks
Gaussian by CLT.
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