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Chernoff bound. Recall Bernstein’s Inequality (the following Theorem 1), introduced in the
previous lecture.

Theorem 1. Let X1, · · · , Xn ∈ [−M, M ] be independent random variables and let X = X1+· · ·+Xn

have mean µ and variance σ2. Then for any t ≥ 0, we have

Pr[|X − µ| ≥ t] ≤ 2 exp
(

− t2

2σ2 + 4
3Mt

)
.

Suppose M = 1 and let t = kσ. Then we have

Pr[|X − µ| ≥ kσ] ≤ 2 exp
(

−k2

4

)
.

Furthermore, if we consider binary variables, we can obtain the following Corollary 1 (also known
as Chernoff Bounds), based on the Bernstein’s inequality.

Corollary 1 (Chernoff bounds). Let X1, · · · , Xn ∈ {0, 1} be independent random variables and let
X = X1 + · · · + Xn have mean µ. Then for any δ ≥ 0, we have

Pr[|X − µ| ≥ δµ] ≤ 2 exp
(

−δ2µ

2 + δ

)
,

Proof. Since X1, · · · , Xn ∈ {0, 1}, and by the definition of variance we have

σ2 = E[X2] − (E[X])2 ≤ E[X2] ≤ E[X] = µ.

Therefore, by Bernstein’s inequality, we have

Pr[|X − µ| ≥ δµ] ≤ 2 exp
(

−δ2µ2

2σ2 + 2
3δµ

)

≤ 2 exp
(

−δ2µ2

2µ + δµ

)

= 2 exp
(

−δ2µ

2 + δ

)
.

Note that the 2
3 in the denominator in the application of Bernstein’s inequality is from resymmetrizing

{0, 1} to
{

−1
2 , +1

2

}
. ■

Additionally, we can also obtain the following corollary 2 (Multiplicative Error Chernoff bounds).
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Corollary 2. Let X1, · · · , Xn ∈ {0, 1} be independent random variables and let X = X1 + · · · + Xn

have mean µ. Then for any δ ∈ (0, 1), we have

Pr[X ≥ (1 + δ)µ] ≤ 2 exp
(

−δ2µ

2 + δ

)
,

P r[X ≤ (1 − δ)µ] ≤ exp
(

−δ2µ

2

)
,

P r[|X − µ| ≥ δµ] ≤ 2 exp
(

−δ2µ

3

)
.

Median-of-means framework. Suppose there is a algorithm A that outputs a real number Z
that is correct with probability 2

3 , and we want to be correct with probability 0.999 or 1 − 1/n2 or
1 − δ. By Chernoff bounds, we can know that if we independently run the algorithm A a total of
O(log 1/δ) times and take the median, the output will be correct with probability 1 − δ.

• Let A∗ be the new algorithm (repeating the A algorithm 100 log 1/δ times). Let Xi = 1 if
the i-th output of A is correct, and the total number of the correct output of algorithm A is
X = X1 + · · · + Xlog 1/δ. And we know that E[X] ≥ 200/3 · log 1/δ.

• We take the median of these outputs of A as the final output of A∗. Thus, when X ≥
100/2 log 1/δ, the algorithm A∗ returns the correct answer.

• Therefore, by Chernoff bounds, we know that

Pr[X ≤ 100/2 log 1/δ] = Pr[X − 200/3 · log 1/δ ≤ −100/6 · log 1/δ]
≤ Pr[|X − E[X]| ≥ 100/6 · log 1/δ]
= Pr[|X − E[X]| ≥ 100/4 · E[X]]

≤ 2 exp
(−10000/16 · 2/3 · log 1/δ

3

)
< δ,

which means the algorithm A∗ will return the correct answer with probability at least 1 − δ.

We can illustrate the core principles of the median-of-means framework through an example:

• Suppose we design a randomized algorithm A to estimate a hidden statistic of a dataset and
we know 0 < Z ≤ 1000.

• Suppose each time we use the algorithm A, it outputs a number X such that E[X] = Z and
V ar[X] = 100Z2.

• Suppose we want to estimate Z to accuracy ϵ with probability 1 − δ.

• Accuracy boosting: Repeat A a total of 1012/ϵ2 time and take the mean (so that we have
Pr[|X − Z| < ϵ] > 0.999, i.e. the mean of the repeated algorithms outputs X that estimates
Z to accuracy ϵ with probability 0.999).

• Success boosting: Find the mean a total of O(log 1/δ) times and take the median to be correct
with probability 1 − δ.
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Max load. Suppose that we have a n-sided die that we roll n times. On average, what is the
largest number of times any outcome is rolled?

• First we fix a value k ∈ [n].

• Let Xi = 1 if the i-th roll is k and Xi = 0 otherwise. Thus, E[Xi] = 1×1/n+0×(n−1)/n = 1/n.

• If we roll the die n times, the total number of rolls with value k is X = X1 + · · · + Xn (such
that E[X] = 1).

• By Chernoff bounds, we can know that

Pr[X ≥ 3 log n] ≤ Pr[X ≥ (1 + 2 log n)]

≤ 2 exp
(

−(2 log n)2

2 + 2 log n

)

∼ 2 exp
(

−(2 log n)2

2 log n

)

= 2 exp
(

−(2 log n)2

2 log n

)

≤ 2
n2 .

• The above inequality means that with probability at least 1 − 2/n2, we will get fewer than
3 log n rolls with value k.

• Thus, by union bound, we can know that no outcome will be rolled more than 3 log n times
with probability at least 1 − 2/n.
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