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Chernoff bound. Recall Bernstein’s Inequality (the following Theorem , introduced in the
previous lecture.

Theorem 1. Let Xy, , X,, € [—=M, M] be independent random variables and let X = X1+ -+ X,

have mean p and variance o®. Then for any t > 0, we have
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Suppose M =1 and let t = ko. Then we have
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Furthermore, if we consider binary variables, we can obtain the following Corollary [1| (also known
as Chernoff Bounds), based on the Bernstein’s inequality.

Corollary 1 (Chernoff bounds). Let Xi,---,X, € {0,1} be independent random variables and let
X =X1 4+ -+ X, have mean p. Then for any § > 0, we have
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Proof. Since X1,---,X,, € {0,1}, and by the definition of variance we have
0? = BIX? — (B[X])? < B[X?] < F[X] = .

Therefore, by Bernstein’s inequality, we have
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Note that the % in the denominator in the application of Bernstein’s inequality is from resymmetrizing
{0,1} to {3, +3}. |
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Additionally, we can also obtain the following corollary [2| (Multiplicative Error Chernoff bounds).



Corollary 2. Let X1, ---,X,, € {0,1} be independent random variables and let X = X1 +---+ X,
have mean p. Then for any § € (0,1), we have
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Median-of-means framework. Suppose there is a algorithm A that outputs a real number Z
that is correct with probability %, and we want to be correct with probability 0.999 or 1 — 1/n? or
1 — 4. By Chernoff bounds, we can know that if we independently run the algorithm A a total of
O(log 1/6) times and take the median, the output will be correct with probability 1 — 4.

o Let A* be the new algorithm (repeating the A algorithm 100log1/6 times). Let X; = 1 if
the i-th output of A is correct, and the total number of the correct output of algorithm A is
X =Xy + -+ Xjog1/5- And we know that E[X] > 200/3-log1/d.

e We take the median of these outputs of A as the final output of A*. Thus, when X >
100/21og 1/4, the algorithm A* returns the correct answer.

o Therefore, by Chernoff bounds, we know that
Pr(X <100/2log1/0] = Pr[X —200/3-log1/6 < —100/6 - log1/4]
< Pr[|X — E[X]| > 100/6 - log 1/¢]
= Pr[|X — E[X]| > 100/4 - E[X]]
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which means the algorithm A* will return the correct answer with probability at least 1 — 4.
We can illustrate the core principles of the median-of-means framework through an example:
e Suppose we design a randomized algorithm A to estimate a hidden statistic of a dataset and

we know 0 < Z < 1000.

o Suppose each time we use the algorithm A, it outputs a number X such that E[X]| = Z and
Var[X] = 10022

e Suppose we want to estimate Z to accuracy e with probability 1 — §.

o Accuracy boosting: Repeat A a total of 10'2/¢? time and take the mean (so that we have

Pr(|X — Z| < €] > 0.999, i.e. the mean of the repeated algorithms outputs X that estimates
Z to accuracy € with probability 0.999).

o Success boosting: Find the mean a total of O(log1/4) times and take the median to be correct
with probability 1 — §.



Max load. Suppose that we have a n-sided die that we roll n times. On average, what is the
largest number of times any outcome is rolled?

o First we fix a value k € [n].
o Let X; = lifthei-throllis k and X; = 0 otherwise. Thus, E[X;] = 1x1/n+0x(n—1)/n = 1/n.

o If we roll the die n times, the total number of rolls with value &k is X = X; + -+ + X, (such
that E[X] =1).

e By Chernoff bounds, we can know that

Pr[X > 3logn] < Pr[X > (1+ 2logn)]
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« The above inequality means that with probability at least 1 — 2/n?, we will get fewer than
3logn rolls with value k.

e Thus, by union bound, we can know that no outcome will be rolled more than 3logn times
with probability at least 1 —2/n.



