CSCE 689: Special Topics in Modern Algorithms for Data Science Fall 2023
Lecture 6 - September 1, 2023
Prof. Samson Zhou
Scribe: Shuo Xing

Chernoff bound. Recall Bernstein's Inequality (the following Theorem 1), introduced in the previous lecture.

Theorem 1. Let $X_{1}, \cdots, X_{n} \in[-M, M]$ be independent random variables and let $X=X_{1}+\cdots+X_{n}$ have mean $\mu$ and variance $\sigma^{2}$. Then for any $t \geq 0$, we have

$$
\operatorname{Pr}[|X-\mu| \geq t] \leq 2 \exp \left(-\frac{t^{2}}{2 \sigma^{2}+\frac{4}{3} M t}\right)
$$

Suppose $M=1$ and let $t=k \sigma$. Then we have

$$
\operatorname{Pr}[|X-\mu| \geq k \sigma] \leq 2 \exp \left(\frac{-k^{2}}{4}\right)
$$

Furthermore, if we consider binary variables, we can obtain the following Corollary 1 (also known as Chernoff Bounds), based on the Bernstein's inequality.

Corollary 1 (Chernoff bounds). Let $X_{1}, \cdots, X_{n} \in\{0,1\}$ be independent random variables and let $X=X_{1}+\cdots+X_{n}$ have mean $\mu$. Then for any $\delta \geq 0$, we have

$$
\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq 2 \exp \left(\frac{-\delta^{2} \mu}{2+\delta}\right)
$$

Proof. Since $X_{1}, \cdots, X_{n} \in\{0,1\}$, and by the definition of variance we have

$$
\sigma^{2}=E\left[X^{2}\right]-(E[X])^{2} \leq E\left[X^{2}\right] \leq E[X]=\mu .
$$

Therefore, by Bernstein's inequality, we have

$$
\begin{aligned}
\operatorname{Pr}[|X-\mu| \geq \delta \mu] & \leq 2 \exp \left(\frac{-\delta^{2} \mu^{2}}{2 \sigma^{2}+\frac{2}{3} \delta \mu}\right) \\
& \leq 2 \exp \left(\frac{-\delta^{2} \mu^{2}}{2 \mu+\delta \mu}\right) \\
& =2 \exp \left(\frac{-\delta^{2} \mu}{2+\delta}\right)
\end{aligned}
$$

Note that the $\frac{2}{3}$ in the denominator in the application of Bernstein's inequality is from resymmetrizing $\{0,1\}$ to $\left\{-\frac{1}{2},+\frac{1}{2}\right\}$.

Additionally, we can also obtain the following corollary 2 (Multiplicative Error Chernoff bounds).

Corollary 2. Let $X_{1}, \cdots, X_{n} \in\{0,1\}$ be independent random variables and let $X=X_{1}+\cdots+X_{n}$ have mean $\mu$. Then for any $\delta \in(0,1)$, we have

$$
\begin{array}{r}
\operatorname{Pr}[X \geq(1+\delta) \mu] \leq 2 \exp \left(\frac{-\delta^{2} \mu}{2+\delta}\right) \\
\operatorname{Pr}[X \leq(1-\delta) \mu] \leq \exp \left(\frac{-\delta^{2} \mu}{2}\right) \\
\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq 2 \exp \left(\frac{-\delta^{2} \mu}{3}\right) .
\end{array}
$$

Median-of-means framework. Suppose there is a algorithm $A$ that outputs a real number $Z$ that is correct with probability $\frac{2}{3}$, and we want to be correct with probability 0.999 or $1-1 / n^{2}$ or $1-\delta$. By Chernoff bounds, we can know that if we independently run the algorithm $A$ a total of $O(\log 1 / \delta)$ times and take the median, the output will be correct with probability $1-\delta$.

- Let $A^{*}$ be the new algorithm (repeating the $A$ algorithm $100 \log 1 / \delta$ times). Let $X_{i}=1$ if the $i$-th output of $A$ is correct, and the total number of the correct output of algorithm $A$ is $X=X_{1}+\cdots+X_{\log 1 / \delta}$. And we know that $E[X] \geq 200 / 3 \cdot \log 1 / \delta$.
- We take the median of these outputs of $A$ as the final output of $A^{*}$. Thus, when $X \geq$ $100 / 2 \log 1 / \delta$, the algorithm $A^{*}$ returns the correct answer.
- Therefore, by Chernoff bounds, we know that

$$
\begin{aligned}
\operatorname{Pr}[X \leq 100 / 2 \log 1 / \delta] & =\operatorname{Pr}[X-200 / 3 \cdot \log 1 / \delta \leq-100 / 6 \cdot \log 1 / \delta] \\
& \leq \operatorname{Pr}[|X-E[X]| \geq 100 / 6 \cdot \log 1 / \delta] \\
& =\operatorname{Pr}[|X-E[X]| \geq 100 / 4 \cdot E[X]] \\
& \leq 2 \exp \left(\frac{-10000 / 16 \cdot 2 / 3 \cdot \log 1 / \delta}{3}\right) \\
& <\delta,
\end{aligned}
$$

which means the algorithm $A^{*}$ will return the correct answer with probability at least $1-\delta$.
We can illustrate the core principles of the median-of-means framework through an example:

- Suppose we design a randomized algorithm $A$ to estimate a hidden statistic of a dataset and we know $0<Z \leq 1000$.
- Suppose each time we use the algorithm $A$, it outputs a number $X$ such that $E[X]=Z$ and $\operatorname{Var}[X]=100 Z^{2}$.
- Suppose we want to estimate $Z$ to accuracy $\epsilon$ with probability $1-\delta$.
- Accuracy boosting: Repeat $A$ a total of $10^{12} / \epsilon^{2}$ time and take the mean (so that we have $\operatorname{Pr}[|X-Z|<\epsilon]>0.999$, i.e. the mean of the repeated algorithms outputs $X$ that estimates $Z$ to accuracy $\epsilon$ with probability 0.999).
- Success boosting: Find the mean a total of $O(\log 1 / \delta)$ times and take the median to be correct with probability $1-\delta$.

Max load. Suppose that we have a $n$-sided die that we roll $n$ times. On average, what is the largest number of times any outcome is rolled?

- First we fix a value $k \in[n]$.
- Let $X_{i}=1$ if the $i$-th roll is $k$ and $X_{i}=0$ otherwise. Thus, $E\left[X_{i}\right]=1 \times 1 / n+0 \times(n-1) / n=1 / n$.
- If we roll the die $n$ times, the total number of rolls with value $k$ is $X=X_{1}+\cdots+X_{n}$ (such that $E[X]=1$ ).
- By Chernoff bounds, we can know that

$$
\begin{aligned}
\operatorname{Pr}[X \geq 3 \log n] & \leq \operatorname{Pr}[X \geq(1+2 \log n)] \\
& \leq 2 \exp \left(\frac{-(2 \log n)^{2}}{2+2 \log n}\right) \\
& \sim 2 \exp \left(\frac{-(2 \log n)^{2}}{2 \log n}\right) \\
& =2 \exp \left(\frac{-(2 \log n)^{2}}{2 \log n}\right) \\
& \leq \frac{2}{n^{2}}
\end{aligned}
$$

- The above inequality means that with probability at least $1-2 / n^{2}$, we will get fewer than $3 \log n$ rolls with value $k$.
- Thus, by union bound, we can know that no outcome will be rolled more than $3 \log n$ times with probability at least $1-2 / n$.

