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1 Low Distortion Embedding

Dimension reduction is an important problem in many fields of machine learning and data analysis.
Last time we defined a low distortion embedding as follows:

• Given x1, ..., xn ∈ Rd, a distance function D, and an accuracy parameter ϵ ∈ [0, 1), a low-
distortion embedding of x1, ..., xn ∈ Rd is a set of points y1, ..., yn and a distance function D′

such that for all i, j ∈ [n],

(1 − ϵ)D(xi, xj) ≤ D′(yi, yj) ≤ (1 + ϵ)D(xi, xj)

In Euclidean space, the distance function D is defined as the l2 norm of the difference of two points,
i.e.,

D(xi, xj) = ||xi − xj ||2.

Some examples of embeddings in Euclidean space are as follows:

1. Suppose x1, ..., xn ∈ Rd all lie on the 1st-axis. Let yi be the first coordinate of xi. Then
||yi − yj ||2 = ||xi − xj ||2 for all i, j ∈ [n]. The embedding has no distortion.

2. Suppose x1, ..., xn ∈ Rd lie in some k-dimensional subspace V of Rd. Then if we rotate V to
coincide with the first k axes of Rd and set yi to be the first k coordinates of xi, then the
embedding has no distortion.

General case: Given x1, ..., xn ∈ Rd that lie in general position, does there exist an embedding
with no distortion? The answer is NO. However, even in the general case, there exists an embedding
with ϵ distortion according to Johnson-Lindenstrauss Lemma.

2 Johnson-Lindenstrauss Lemma

Lemma 1 (Johnson-Lindenstrauss Lemma). Given x1, ..., xn ∈ Rd and an accuracy parameter
ϵ ∈ [0, 1), there exists a linear map Π : Rd → Rm with m = O( log n

ϵ2 ) so that if yi = Πxi, then for all
i, j ∈ [n]:

(1 − ϵ)||xi − xj ||2 ≤ ||yi − yj ||2 ≤ (1 + ϵ)||xi − xj ||2
.
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For d = 1012, n = 105, and ϵ = 0.5, we only require m ≈ 6600, which demonstrates the effectiveness
of this lemma.

We first define the distributional Johnson-Lindenstrauss lemma as follows:

Lemma 2 (Distributional Johnson-Lindenstrauss Lemma). Given Π ∈ Rm×d with m = O( log n
ϵ2 )

and each entry drawn from 1√
m

N (0, 1), let x ∈ Rd and suppose y = Πx. Then with probability at
least 1 − δ,

(1 − ϵ)||x||2 ≤ ||y||2 ≤ (1 + ϵ)||x||2.

To prove Lemma 2, recall that for independent Gaussian random variable a ∼ N (µ1, σ2
1) and

b ∼ N (µ2, σ2
2), we have

a + b ∼ N (µ1 + µ2, σ2
1 + σ2

2).

Let us denote y = (y1, y2, ..., ym) and that x = (x1, x2, ..., xd). By the linear transform y = Πx, it
follows that

yi = 1√
m

d∑
j=1

Πi,jxj

Then yi ∼ N (0, 1
m ||x||2). Thus we also have E[||y||2] = E[y2

1 + ... + y2
m] = ||x||2, which is correct in

expectation. In fact, ||y||2 is distributed as Chi-Squared random variable with m degrees of freedom
(sum of m squared independent Gaussians). Therefore, we can use the following Chi-Squared
Concentration Inequality.

Lemma 3 (Chi-Squared Concentration Inequality). Let Z be a Chi-squared random variable with
m degrees of freedom. Then

Pr[|Z − EZ| ≥ ϵE[Z]] ≤ 2e−mϵ2/8.

By setting m = O( log(1/δ)
ϵ2 ), the proof of Lemma 2 follows.

Finally, we prove the Johnson-Lindenstrauss lemma using the distributional Johnson-Lindenstrauss
lemma.

Proof of Lemma 1: First, notice that if we define zi,j = xi − xj ∈ Rd for all i, j ∈ [n], then
what we need to prove is (1 − ϵ)||zi,j ||2 ≤ ||z′

i,j ||2 ≤ (1 + ϵ)||zi,j ||2 where z′
i,j = Πzi,j . Since there

are n vectors of x, there should be n(n+1)
2 elements in the set {zij}i,j∈[n]. Therefore, we can invoke

the distributional Johnson-Lindenstrauss lemma with failure probability δ = O
(

1
n3

)
. Taking the

union bound over all i, j, we can conclude the proof. □
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