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Symmetric Norms

❖ A norm is symmetric if it is invariant under permutations and sign 
flips on an input frequency vector

𝑎 = 1,3, −2,0,0,5, −2,4
𝑏 = 1,3,2,0,0,5,2,4
𝑐 = 0,0,1,2,2,3,4,5

𝑎 = 𝑏 = 𝑐
𝐿 𝑎 = 𝐿 𝑏 = 𝐿(𝑐)



𝐿𝑝 Norms

❖ Let 𝐹𝑝 be the frequency moment of the vector 𝑓 ∈ 𝑅𝑛:

❖ Then the 𝐿𝑝 norm of the frequency vector 𝑓 is:

❖ Goal: Given an accuracy parameter 𝛼, output a (1 + 𝛼)-
approximation to 𝐿𝑝

❖ Motivation: Entropy estimation, linear regression

𝐹𝑝 = 𝑓1
𝑝

+ 𝑓2
𝑝

+ ⋯ + 𝑓𝑛
𝑝

𝐿𝑝 𝑓 = 𝐹𝑝 𝑓
1/𝑝



Differential Privacy

❖ [DworkMcSherryNissimSmith06] Given 휀 > 0 and 𝛿 ∈ 0,1 , a 
randomized algorithm 𝐴: 𝑈∗ → 𝑌 is (휀, 𝛿)-differentially private if, for 
every neighboring frequency vectors 𝑓 and 𝑓′ and for all 𝐸 ⊆ 𝑌,

Pr 𝐴 𝑓 ∈ 𝐸 ≤ 𝑒 Pr 𝐴 𝑓′ ∈ 𝐸 + 𝛿



Multiple Privately Queries

❖ Privately query 𝑓 ∈ 𝑅𝑛 multiple times?

❖ Add noise to each query with scale parameter depending on the 
number 𝑄 of queries

❖ Accuracy degrades as the number 𝑄 of queries increases



Can we answer multiple queries without 
sacrificing accuracy?

“Beating advanced composition”
“Avoid privacy analysis per algorithm”



Streaming Model

❖ Input: Elements of an underlying data set 𝑆, which arrives 
sequentially

❖ Output: Evaluation (or approximation) of a given function

❖ Goal: Use space sublinear in the size 𝑚 of the input 𝑆



Symmetric Norms in the Streaming Model

❖ Given a stream 𝑆 of 𝑚 elements from [𝑛], let 𝑓𝑖 be the frequency 
of element 𝑖. (How often it appears)

❖ Goal: Given a stream 𝑆 of length 𝑚 that defines a frequency vector 
𝑓 ∈ 𝑅𝑛 and an accuracy parameter 𝛼, output a (1 + 𝛼)-
approximation to 𝐿(𝑓), using space sublinear in 𝑛 and 𝑚

1 1 2 1 2 1 1 2 3  5, 3, 1, 0 ≔ 𝑓



Our Result

There exists an 휀, 𝛿 -differentially private algorithm such that:

❖ Input: on a stream 𝑆 of length 𝑚 that defines a frequency vector 
𝑓 ∈ 𝑅𝑛 that 

❖ Output: a set 𝐶, from which the (1 + 𝛼)-approximation to any 
symmetric norm with maximum modulus of concentration 𝑀 can 
be computed with probability 1 − 𝛿. 

❖ The algorithm uses 𝑀2 ⋅ poly
1

𝛼
,

1
, log 𝑛, 𝑚 , log

1

𝛿
 space



Applications

❖ For 𝐿𝑝 norms, 𝑀 ℓ = 𝑂(log 𝑚) for 𝑝 ∈ 1,2  and 𝑀 ℓ =
𝑂 𝑛1/2−1/𝑝  for 𝑝 > 2 [MilmanSchectman86, KlartagVershynin07]

❖ Our algorithm achieves space poly log(𝑚) for 𝑝 ∈ 1,2  and 
෨𝑂 𝑛1−2/𝑝  for 𝑝 > 2 in the constant 𝛼, 휀 and 𝛿 =

1

poly(𝑚)
 regime

❖ Matches known lower bounds up to log factors [Bar-
YossefJayramKumarSivakumar04]

❖ For top 𝑘 norms, 𝑀 ℓ =

෨𝑂
𝑛

𝑘
 [BlasiokBravermanChestnutKrauthgamerYang17]



Maximum Modulus of Concentration

❖ Maximum modulus of concentration [MilmanSchectman86] of a 
norm measures the worst-case ratio of the maximum value to the 
median value of a norm on the 𝐿2-unit sphere for any restriction of 
the coordinates

❖ Intuitively, quantifies the “difficulty” of computing a norm



Modulus of Concentration

❖ Let 𝑓 ∈ 𝑅𝑛 be a random vector drawn from the uniform 
distribution on the 𝐿2-unit sphere 𝑆𝑛−1

❖ Let 𝑏𝐿 denote the maximum value of 𝐿(𝑓) over 𝑆𝑛−1  and let 
𝑀𝐿 denote the median of 𝐿(𝑓), i.e., the unique value such that 

Pr 𝐿 𝑓 ≥ 𝑀𝐿 ≥
1

2
 and Pr 𝐿 𝑓 ≤ 𝑀𝐿 ≥

1

2
 

❖ The ratio mc 𝐿 =
𝑏𝐿

𝑀𝐿
 is the modulus of concentration of 𝐿



Modulus of Concentration

𝑏𝐿 is the maximum value of 𝐿(𝑓) over 𝑆𝑛−1 
𝑀𝐿 is the median of 𝐿(𝑓)

𝑏𝐿 = 𝑛
𝑀𝐿 ≈ 𝑛 

𝑏𝐿 = 1

𝑀𝐿 ≈ 𝑛−1/6 



Maximum Modulus of Concentration

❖ Maximum modulus of concentration of a norm is the maximum of 
the modulus of concentration of the norm restricted to sub-
coordinates of 𝑅𝑛

❖ Definition is robust to “average” norms that “hide” challenging 
behavior embedded in lower-dimensional space

❖ 𝐿 𝑥 = max
𝐿1 𝑥

𝑛
, 𝐿∞(𝑥)



Symmetric Norms

❖ A norm is symmetric if it is invariant under permutations and sign 
flips on an input frequency vector

𝑎 = 1,3, −2,0,0,5, −2,4
𝑏 = 1,3,2,0,0,5,2,4
𝑐 = 0,0,1,2,2,3,4,5
𝐿 𝑎 = 𝐿 𝑏 = 𝐿(𝑐)



Approximating Symmetric Norms

❖ Only care about number of coordinates in each range [𝜉𝑖 , 𝜉𝑖+1) for 
some 𝜉 > 1 a function of the desired accuracy parameter 𝛼

𝑣 = 0,0,1,2,2,3,4,5
#coordinates in [1,2): 1
#coordinates in [2,4): 3
#coordinates in [4,8): 2

𝜉 = 2



Level Sets and Contribution

❖ Level set 𝑖 is the set of coordinates with magnitude in range 𝜉𝑖 , 𝜉𝑖+1

❖ The contribution of the level set is the “amount” the level set 
contributes to the norm of the entire frequency vector

𝑣 = 0,0,1,2,2,3,4,5

Level set 0

Level set 1

Level set 2



Important Level Sets

❖ A level set is important if its contribution is an 
𝛼

𝑂(log 𝑚)
 fraction of 

the norm of the entire frequency vector

❖ It suffices to estimate the contribution of the important level sets 

within 1 +
𝛼

𝑂(log 𝑚)
-approximation 

[BlasiokBravermanChestnutKrauthgamerYang17]



Important Level Sets

❖ Intuition: Important level sets must either have large magnitude 
coordinates or a large number of coordinates

❖  How to privately release important level sets?

𝑣 = 1,1,1, … , 1,1,10000

1,1,1, … , 1,1,0
0,0,0, … , 0,0,10000



Important Level Sets

❖ Definition: Define thresholds 𝑇1 and 𝑇2. A level set 𝑖 is “high” if 
𝜉𝑖 ≥ 𝑇1. A level set 𝑖 is “medium” if 𝜉𝑖+1 ≤ 𝑇1 and 𝜉𝑖 ≥ 𝑇2. A level 
set 𝑖 is “low” if 𝜉𝑖+1 ≤ 𝑇2

❖ Intuition: Important high level sets have large coordinates, 
important low level sets have a large number of coordinates, 
important medium level sets have a combination of the two



Heavy-Hitters

❖ Given a set 𝑆 of 𝑚 elements from [𝑛], let 𝑓𝑖 be the frequency of 
element 𝑖. (How often it appears)

❖ Let 𝐿2 be the norm of the frequency vector:

❖ Goal: Given a set 𝑆 of 𝑚 elements from [𝑛] and a threshold 𝛼, 
output the elements 𝑖 such that 𝑓𝑖 > 𝛼𝐿2...and no elements 𝑗 such 
that 𝑓𝑗 <

𝛼

16
 𝐿2

𝐿2 = 𝑓1
2 + 𝑓2

2 + ⋯ + 𝑓𝑛
2



CountSketch

❖ Given a threshold/accuracy parameter 𝛼, there exists a one-pass 
streaming algorithm COUNTSKETCH that outputs an estimated 
frequency for each element, with additive error 𝛼 ⋅ 𝐿2(𝑓)

❖ The algorithm uses 𝑂
1

𝛼2 log2 𝑚  space



CountSketch

❖ COUNTSKETCH with threshold/accuracy parameter 𝑂
poly 𝛼,

𝑀 poly log 𝑚
 

will find the important high level sets because their magnitude is so 
large, but it will miss the others

𝑣 = 1,1,1, … , 1,1,10000

1,1,1, … , 1,1,0
0,0,0, … , 0,0,10000



Subsampling the Universe

❖ Sample coordinates of the universe with probability 
1

2𝑗 for 𝑗 =

0,1, … , 𝑂(log 𝑛) [IndykWoodruff05]

❖ The important medium and low level sets will be heavy-hitters in 
the subsampled streams!

𝑣 = 1,1,1,1,1,1,1, … , 1,1,1,1,1,10000
1,0,1,0,0,1,0, … , 1,0,0,1,1,10000

1,0,0,0,0,1,0, … , 0,0,0,1,0,0



Subsampling the Universe

❖ Sample coordinates of the universe with probability 
1

2𝑗 for 𝑗 =

0,1, … , 𝑂(log 𝑛) [IndykWoodruff05]

❖ Will find the important medium and low level sets

𝑣 = 1,1,1,1,1,1,1, … , 1,1,1,1,1,10000
1,0,1,0,0,1,0, … , 1,0,0,1,1,10000

1,0,0,0,0,1,0, … , 0,0,0,1,0,0



Towards Privacy

❖ PRIVCOUNTSKETCH, private release of heavy-hitters, by adding 
Laplacian noise to each coordinate

❖ Even though PRIVCOUNTSKETCH estimates 𝑛 frequencies, only 

𝑂
1

𝛼2  frequencies are released, so only need to add Laplacian 

noise with scale 𝑂
1

𝛼2



Towards Privacy

❖ Even Laplacian noise with scale 𝑂
1

𝛼2  is too much noise for 

important low level sets

❖ Instead add Laplacian noise to the size of each important low level 
set



Important High 
Level Sets

Important 
Medium Level 

Sets

Important Low 
Level Sets

PRIVCOUNTSKETCH

Subsampling
PRIVCOUNTSKETCH 
+ Rescaling level set 

sizes

Private magnitudes 
of coordinates

Private sizes of level 
sets

Subsampling
Adding noise to 
level set sizes

Private sizes of level 
sets



Summary

There exists an 휀, 𝛿 -differentially private algorithm such that:

❖ Input: on a stream 𝑆 of length 𝑚 that defines a frequency vector 
𝑓 ∈ 𝑅𝑛 that 

❖ Output: a set 𝐶, from which the (1 + 𝛼)-approximation to any 
symmetric norm with maximum modulus of concentration 𝑀 can 
be computed with probability 1 − 𝛿. 

❖ The algorithm uses 𝑀2 ⋅ poly
1

𝛼
,

1
, log 𝑛, 𝑚 , log

1

𝛿
 space

❖ Algorithm splits important level sets into high, medium, and low 
coordinates and separately releases private statistics for each
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