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Symmetric Norms

s A norm is symmetric if it is invariant under permutations and sign
flips on an input frequency vector

a =[1,3,-2,0,0,5, —2,4]
b =[1,3,2,0,0,52,4]
¢ =1[0,0,1,2,2,3,4,5]
lall = 1Ib]l = llc]|
L(a) = L(b) = L(c)




Lp Norms

* Let F, be the frequency moment of the vector f € R"™:

_ b p p
Fp_f1 +f2 +'"+fn
** Then the L, norm of the frequency vector f is:

L) = (B(D) "

¢ Goal: Given an accuracy parameter a, output a (1 + a)-
approximation to L,,

s Motivation: Entropy estimation, linear regression



Differential Privacy

% [DworkMcSherryNissimSmith06] Given € > 0 and § € (0,1), a
randomized algorithm A: U™ — Y is (&, §)-differentially private if, for
every neighboring frequency vectors f and f' and forall E C Y,

Prl[A(f) € E] < e®Pr|A(f') €eE]+ 6



Multiple Privately Queries

¢ Privately query f € R™ multiple times?

** Add noise to each query with scale parameter depending on the
number Q of queries

¢ Accuracy degrades as the number Q of queries increases



Can we answer multiple queries without
sacrificing accuracy?

“Beating advanced composition”
“Avoid privacy analysis per algorithm”



Streaming Model

** Input: Elements of an underlying data set S, which arrives
sequentially

¢ Output: Evaluation (or approximation) of a given function
** Goal: Use space sublinear in the size m of the input S



Symmetric Norms in the Streaming Model

¢ Given a stream S of m elements from [n], let f; be the frequency
of element i. (How often it appears)

112121123—(5,3,1,0| = f

** Goal: Given a stream S of length m that defines a frequency vector
f € R™ and an accuracy parameter «, output a (1 + a)-
approximation to L(f), using space sublinear inn and m



Our Result

There exists an (&, §)-differentially private algorithm such that:

** Input: on a stream S of length m that defines a frequency vector
f € R™ that

¢ Output: a set C, from which the (1 4+ a)-approximation to any
symmetric norm with maximum modulus of concentration M can
be computed with probability 1 — 0.

* The algorithm uses M? - poly (ié, log(n,m),log %) space



Applications

» For L, norms, M(£) = O(logm) forp € [1,2] and M(¥) =
0(n/24=1/P) for p > 2 [MilmanSchectmang86, KlartagVershynin07]

** Our algorithm achieves space poly log(m) for p € |1,2] and
O(n'~2/P) forp > 2 in the constant @, € and § = -

regime
poly(m) ' O

** Matches known lower bounds up to log factors [Bar-
YosseflayramKumarSivakumar04]

¢ For top k norms, M(¥) =
0 (\/%) [BlasiokBravermanChestnutKrauthgamerYang17]



Maximum Modulus of Concentration

s* Maximum modulus of concentration [MilmanSchectman86] of a
norm measures the worst-case ratio of the maximum value to the
median value of a norm on the L,-unit sphere for any restriction of
the coordinates

** Intuitively, quantifies the “difficulty” of computing a norm



Modulus of Concentration

¢ Let f € R" be a random vector drawn from the uniform
distribution on the L,-unit sphere S™~1

<+ Let b, denote the maximum value of L(f) over ™! and let
M; denote the median of L(f), i.e., the unique value such that

Pr[L(f) = M,] >~ and Pr[L(f) < M,] >~

. . b . .
¢ The ratio mc(L) = M—L is the modulus of concentration of L
L



Modulus of Concentration

b; is the maximum value of L(f) over S™~1
M; is the median of L(f)

F\%

-
\_

Y

\/ﬁ bL — 1
M, ~+n M, ~n~1/6



Maximum Modulus of Concentration

s Maximum modulus of concentration of a norm is the maximum of
the modulus of concentration of the norm restricted to sub-
coordinates of R"

¢ Definition is robust to “average” norms that “hide” challenging
behavior embedded in lower-dimensional space

% L(x) = max (Li/(ﬁx) , Loo(x))



Symmetric Norms

s A norm is symmetric if it is invariant under permutations and sign
flips on an input frequency vector

a = [1,3,-2,0,0,5, —2,4]
b=11,32,00,5,2,4]
¢ = [0,0,1,2,2,3,4,5]
L(a) = L(b) = L(c)



Approximating Symmetric Norms

% Only care about number of coordinates in each range [¢!, £1F1) for
some ¢ > 1 a function of the desired accuracy parameter «

v =10,01,2,2,3,4,5]
#coordinates in [1,2): 1
& =2 #coordinates in [2,4): 3
#coordinates in [4,8): 2




Level Sets and Contribution

¢ Level set i is the set of coordinates with magnitude in range [fi, 5”1)

** The contribution of the level set is the “amount” the level set
contributes to the norm of the entire frequency vector

Level set O Level set 2



Important Level Sets

* A level set is important if its contribution is an = fraction of
O(log m)

the norm of the entire frequency vector

It suffices to estimate the contribution of the important level sets
within (1 +—

O(log m)

[BlasiokBravermanChestnutKrauthgamerYangl7]

)-approximation



Important Level Sets

** Intuition: Important level sets must either have large magnitude
coordinates or a large number of coordinates

v=[1,11,..,1/1, ]

11,1,1, ...,1,1,0]
[0,0,0, ...,0,0, ]

** How to privately release important level sets?



Important Level Sets

* Definition: Define thresholds T; and T5. A level set i is “high” if
&' = Ty. Alevel set i is “medium” if &1 < T and &' = T,. A level
set i is “low” if §'T1 < T,

** Intuition: Important high level sets have large coordinates,
important low level sets have a large number of coordinates,
important level sets have a



Heavy-Hitters

¢ Given a set S of m elements from [n], let f; be the frequency of
element i. (How often it appears)

** Let L, be the norm of the frequency vector:

L, = \/f12 +fi ot fa

¢ Goal: Given a set S of m elements from [n] and a threshold «,
output the elements i such that f; > aL,...and no elements j such

a
that fj < — L,




CountSketch

** Given a threshold/accuracy parameter «, there exists a one-pass
streaming algorithm COUNTSKETCH that outputs an estimated
frequency for each element, with additive error a - L, (f)

1

— log? m) space

¢ The algorithm uses O (



CountSketch

** COUNTSKETCH with threshold/accuracy parameter O ( poly(a.z) )
M poly logm

will find the important high level sets because their magnitude is so
large, but it will miss the others

v=[111,.., 11, ]

[1,1,1,...,1,1,0]
[0,0,0, ..., 0,0, ]



Subsampling the Universe

** Sample coordinates of the universe with probability 2—1] forj =
0,1,...,0(logn) [IndykWoodruffO5]

v=[1111111,..,1,1,1,1,1, ]
[1,0,1,0,0,1,0, ...,1,0,0,1,1, ]
[1,0,0,0,0,1,0, ...,0,0,0,1,0,0]

** The important medium and low level sets will be heavy-hitters in
the subsampled streams!



Subsampling the Universe

** Sample coordinates of the universe with probability 2—1] forj =
0,1,...,0(logn) [IndykWoodruffO5]

v=[1111111,..,1,1,1,1,1, ]
[1,0,1,0,0,1,0, ...,1,0,0,1,1, ]
[1,0,0,0,0,1,0, ...,0,0,0,1,0,0]

s Will find the important medium and low level sets



Towards Privacy

** PRIVCOUNTSKETCH, private release of heavy-hitters, by adding
Laplacian noise to each coordinate

** Even though PRIVCOUNTSKETCH estimates n frequencies, only

1

0 (—2) frequencies are released, so only need to add Laplacian
a

noise with scale O (i)

a2



Towards Privacy

. . . 1. .
¢ Even Laplacian noise with scale O (—) is too much noise for

az
important low level sets

¢ Instead add Laplacian noise to the size of each important low level
set



Important High
Level Sets

Important
Medium Level
Sets

Important Low
Level Sets

PRIVCOUNTSKETCH
PRIVCOUNTSKETCH
Subsampling + Rescaling level set
sizes
Subsampling Adding noise to
level set sizes

Private magnitudes
of coordinates

Private sizes of level
sets

Private sizes of level
sets
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Summary

= == o

merci
There exists an (&, §)-differentially private algorithm such that:

** Input: on a stream S of length m that defines a frequency vector
f € R™ that

¢ Output: a set C, from which the (1 + a)-approximation to any
symmetric norm with maximum modulus of concentration M can
be computed with probability 1 — 0.

* The algorithm uses M? - poly (— -,log(n,m),log ) space

** Algorithm splits important level sets into high, medium, and low
coordinates and separately releases private statistics for each

n:
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