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Goal: Cluster a stream of 𝑛 points using 𝑜(log 𝑛) space



Clustering

• Goal: Given input dataset 𝑋, partition 𝑋 so that “similar” points are in 
the same cluster and “different” points are in different clusters



𝑘-Clustering

• Goal: Given input dataset 𝑋, partition 𝑋 so that “similar” points are in 
the same cluster and “different” points are in different clusters

• There can be at most 𝑘 different clusters

𝑘 = 3



𝑘-Clustering

• Question: How do we measure the “quality” of each clustering?

𝑘 = 3



𝑘-Clustering

• Question: How do we measure the “quality” of each clustering?

• Assign a “center” 𝑐𝑖 to each cluster

• Have a cost function induced by 𝑐𝑖 for all of the points 𝑃𝑖 assigned to 
cluster 𝑖



𝑘-Clustering

• Question: How do we measure the “quality” of each clustering?

• Assign a “center” 𝑐𝑖 to each cluster

• Have a cost function induced by 𝑐𝑖 for all of the points 𝑃𝑖 assigned to 
cluster 𝑖

• Assume points are in metric space with distance function dist(⋅,⋅)

• Define Cost 𝑃𝑖 , 𝑐𝑖 to be a function of dist 𝑥, 𝑐𝑖 𝑥∈𝑃𝑖



𝑘-Clustering

• Question: How do we measure the “quality” of each clustering?

• Have a cost function induced by 𝑐𝑖 for all of the points 𝑃𝑖 assigned to 
cluster 𝑖

• Define Cost 𝑃𝑖 , 𝑐𝑖 to be a function of dist 𝑥, 𝑐𝑖 𝑥∈𝑃𝑖

• Suppose the set of centers is 𝐶 = 𝑐1, … , 𝑐𝑘

• Define clustering cost Cost 𝑋, 𝐶 to be a function of 
dist 𝑥, 𝐶 𝑥∈𝐶



𝑘-Clustering

• Define clustering cost Cost 𝑋, 𝐶 to be a function of 
dist 𝑥, 𝐶 𝑥∈𝐶



𝑘-Clustering

• Define clustering cost Cost 𝑋, 𝐶 to be a function of 
dist 𝑥, 𝐶 𝑥∈𝐶

• 𝑘-center: Cost 𝑋, 𝐶 = max
𝑥∈𝑋

dist(𝑥, 𝐶)



𝑘-Clustering

• Define clustering cost Cost 𝑋, 𝐶 to be a function of 
dist 𝑥, 𝐶 𝑥∈𝐶

• 𝑘-center: Cost 𝑋, 𝐶 = max
𝑥∈𝑋

dist(𝑥, 𝐶)

• 𝑘-median: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶



𝑘-Clustering

• Define clustering cost Cost 𝑋, 𝐶 to be a function of 
dist 𝑥, 𝐶 𝑥∈𝐶

• 𝑘-center: Cost 𝑋, 𝐶 = max
𝑥∈𝑋

dist(𝑥, 𝐶)

• 𝑘-median: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶

• 𝑘-means: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶
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𝑘-Clustering

• Define clustering cost Cost 𝑋, 𝐶 to be a function of 
dist 𝑥, 𝐶 𝑥∈𝐶

• 𝑘-center: Cost 𝑋, 𝐶 = max
𝑥∈𝑋

dist(𝑥, 𝐶)

• 𝑘-median: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶

• 𝑘-means: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶
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Euclidean 𝑘-Clustering

• For Euclidean 𝑘-clustering, input points 𝑋 = 𝑥1, … , 𝑥𝑛 are in 
ℝ𝑑 (for us, they will be in [Δ]𝑑≔ 1,2, … , Δ 𝑑)

• dist 𝑥, 𝑦 = 𝑥1 − 𝑦1
2 + ⋯ + 𝑥𝑑 − 𝑦𝑑

2 is the Euclidean 
distance

• (𝑘, 𝑧)-clustering problem:

min
𝐶: 𝐶 ≤𝑘

 Cost 𝑋, 𝐶 = min
𝐶: 𝐶 ≤𝑘

Σ𝑥∈𝑋 dist 𝑥, 𝐶
𝑧



The Streaming Model

• Input: Updates to an underlying data set 𝑋 that arrive 
sequentially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑛 of the input 𝑋



Goal: Cluster a stream of 𝑛 points using 𝑜(log 𝑛) space



Our Results (Insertion-Only)

• There exists a one-pass algorithm on insertion-only streams that 
outputs (1 + 𝜀)-approximation for (𝑘, 𝑧)-clustering for all times 

in the stream and uses ෨𝑂
𝑑𝑘

𝜀2 ⋅ min 𝑘,
1

𝜀𝑧 ⋅ poly(log log 𝑛Δ)

words of space

• Our algorithm outputs (1 + 𝜀)-coreset constructions for (𝑘, 𝑧)-
clustering for all times in the stream



Our Results (Insertion-Deletion Impossibility)

• Any one-pass algorithm on insertion-deletion streams that 
outputs a 2-approximation to the (𝑘, 𝑧)-clustering cost at all 
times in the stream with 𝑑 = Ω log 𝑛 must use Ω log2 𝑛
bits of space

• Any one-pass algorithm on insertion-deletion streams that 
outputs a 2-approximation to the (𝑘, 𝑧)-clustering cost from 
a weighted subset of the input must use Ω log2 𝑛 bits of 
space



Our Results (Insertion-Deletion Two-Pass)

• There exists a two-pass algorithm on insertion-deletion 
streams that outputs a (1 + 𝜀)-coreset construction for 𝑘-

median and 𝑘-means clustering that uses ෨𝑂
1

𝜀2 ⋅

poly 𝑑, 𝑘, log log 𝑛Δ words of space

• Result generalizes to 𝑧 ∈ [1,2]



Our Results (Sum of the Online Sensitivities)

• Sum of the online sensitivities of a set of 𝑛 points in ℝ𝑑 for 
(𝑘, 𝑧)-clustering is at most 𝑂 𝑘 log2(𝑛𝑑Δ)



• Subset 𝑋′ of representative 
points of 𝑋 for a specific 
clustering objective

• Cost 𝑋, 𝐶 ≈ Cost(𝑋′, 𝐶) 
for all sets 𝐶 with 𝐶 = 𝑘

Coreset
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• Subset 𝑋′ of representative 
points of 𝑋 for a specific 
clustering objective

• Cost 𝑋, 𝐶 ≈ Cost(𝑋′, 𝐶) 
for all sets 𝐶 with 𝐶 = 𝑘

Coreset



Coreset (Formal Definition)

• Given a set 𝑋 and an accuracy parameter ε > 0, we say a set 
𝑋′ with weight function 𝑤 is an (1 + ε)-multiplicative 
coreset for a cost function Cost, if for all queries 𝐶 with 
𝐶 ≤ 𝑘, we have

1 − ε Cost(𝑋, 𝐶) ≤ Cost(𝑋′, 𝐶, 𝑤) ≤ 1 + ε Cost(𝑋, 𝐶)

(𝑘, 𝑧)-clustering: Cost 𝑋′, 𝐶, 𝑤 = σ𝑥∈𝑋′ 𝑤 𝑥 ⋅ dist 𝑥, 𝐶
𝑧



Coreset Constructions

• Let ෨𝑂 𝑓 denote 𝑓 ⋅ polylog(𝑓)

• For (𝑘, 𝑧)-clustering, there exist coreset constructions that 

only require ෨𝑂
𝑘

𝜀2 ⋅ min 𝑘,
1

𝜀𝑧 weighted points of the input 

[Cohen-AddadLarsenSaulpicSchweighelshohn22]

• Independent of input size 𝑛



(𝑘, 𝑧)-Clustering in the Streaming Model

• Merge-and-reduce framework

• Suppose there exists a (1 + 𝜀)-coreset construction for 

(𝑘, 𝑧)-clustering that uses 𝑓 𝑘,
1

𝜀
weighted input points 

• Partition the stream into blocks containing 𝑓 𝑘,
log 𝑛

𝜀
points

෨𝑂
𝑘

𝜀2+𝑧



(𝑘, 𝑧)-Clustering in the Streaming Model

• Partition the stream into blocks containing 𝑓 𝑘,
log 𝑛

𝜀
points

• Create a 1 +
𝜀

log 𝑛
-coreset for each block

• Create a 1 +
𝜀

log 𝑛
-coreset for the set of points formed by 

the union of two coresets for each block

Merge

Reduce



(𝑘, 𝑧)-Clustering in the Streaming Model

• Partition the stream into blocks containing 𝑓 𝑘,
log 𝑛

𝜀
points

• Create a 1 +
𝜀

log 𝑛
-coreset for each block

• Create a 1 +
𝜀

log 𝑛
-coreset for the set of points formed by 

the union of two coresets for each block



(𝑘, 𝑧)-Clustering in the Streaming Model

• There are 𝑂 log 𝑛 levels

• Each coreset is a 1 +
𝜀

log 𝑛
-coreset of two coresets

• Total approximation is 1 +
𝜀

log 𝑛

log 𝑛
= (1 + 𝑂 𝜀 )



(𝑘, 𝑧)-Clustering in the Streaming Model

• Suppose there exists a (1 + 𝜀)-coreset construction for 

(𝑘, 𝑧)-clustering that uses 𝑓 𝑘,
1

𝜀
weighted input points 

• Partition the stream into blocks containing 𝑓 𝑘,
log 𝑛

𝜀
points

• Total space is 𝑓 𝑘,
log 𝑛

𝜀
⋅ 𝑂(log 𝑛) points

For 𝑘-means clustering, this is ෨𝑂
𝑘

𝜀4 ⋅ log3 𝑛  points



(𝑘, 𝑧)-Clustering in the Streaming Model

• Suppose there exists a (1 + 𝜀)-coreset construction for 

(𝑘, 𝑧)-clustering that uses 𝑓 𝑘,
1

𝜀
weighted input points 

• Partition the stream into blocks containing 𝑓 𝑘,
log 𝑛

𝜀
points

• Total space is 𝑓 𝑘,
log 𝑛

𝜀
⋅ 𝑂(log 𝑛) points



(𝑘, 𝑧)-Clustering in the Streaming Model

• Suppose there exists a (1 + 𝜀)-coreset construction for 

(𝑘, 𝑧)-clustering that uses 𝑓 𝑘,
1

𝜀
weighted input points 

• Partition the stream into blocks containing 𝑓 𝑘,
log 𝑛

𝜀
points

• Total space is 𝑓 𝑘,
log 𝑛

𝜀
⋅ 𝑂(log 𝑛) points

Do there exist streaming algorithms for (𝑘, 𝑧)-clustering 
that use 𝑜(log 𝑛) words of space? 





Questions?Format

▪Part 1: Background

▪Part 2: Insertion-Only Streams

▪Part 3: 𝑘-Median on Dynamic 
Streams

▪Part 4: (𝑘, 𝑧)-Clustering on 
Dynamic Streams



Coreset Construction and Sampling

• Consider a fixed set 𝑋 and a fixed set 𝐶 of 𝑘 centers, which 
induces a fixed cost Cost(𝑋, 𝐶)



Coreset Construction and Sampling

• Consider a fixed set 𝑋 and a fixed set 𝐶 of 𝑘 centers, which 
induces a fixed cost Cost(𝑋, 𝐶)

• A simple way to obtain 𝑋′ with Cost 𝑋′, 𝐶 ≈ Cost(𝑋, 𝐶) is 
to uniformly sample points of 𝑋 into 𝑋′



Coreset Construction and Sampling

• Consider a fixed set 𝑋 and a fixed set 𝐶 of 𝑘 centers, which 
induces a fixed cost Cost(𝑋, 𝐶)

• Uniform sampling needs a lot of samples if there is a single 
point that greatly contributes to Cost(𝑋, 𝐶)



Coreset Construction and Sampling

• Fix: Importance sampling, sample each point 𝑥 ∈ 𝑋 into 𝑋′
with probability proportional Cost(𝑥, 𝐶), i.e., Cost(𝑥, 𝐶)/
Cost(𝑋, 𝐶)



Coreset Construction and Sampling

• Fix: Importance sampling, sample each point 𝑥 ∈ 𝑋 into 𝑋′
with probability proportional Cost(𝑥, 𝐶), i.e., Cost(𝑥, 𝐶)/
Cost(𝑋, 𝐶)

• Importance sampling only needs 𝑋′ to have size 𝑂
1

𝜀2 to 

achieve 1 + 𝜀 -approximation to Cost(𝑋, 𝐶)



Coreset Construction and Sampling

• Importance sampling only needs 𝑋′ to have size 𝑂
1

𝜀2 to 

achieve 1 + 𝜀 -approximation to Cost(𝑋, 𝐶)

• What about a different choice 𝐶 of 𝑘 centers?



Coreset Construction and Sampling

• Importance sampling only needs 𝑋′ to have size 𝑂
1

𝜀2 to 

achieve 1 + 𝜀 -approximation to Cost(𝑋, 𝐶)

• To handle all possible sets of 𝑘 centers:
• Need to sample each point 𝑥 with probability 

max
𝐶

Cost 𝑥,𝐶

Cost 𝑋,𝐶
instead of 

Cost 𝑥,𝐶

Cost 𝑋,𝐶

• Need to union bound over a net of all possible sets of 𝑘
centers



Coreset Construction and Sampling

• Importance sampling only needs 𝑋′ to have size 𝑂
1

𝜀2 to 

achieve 1 + 𝜀 -approximation to Cost(𝑋, 𝐶)

• To handle all possible sets of 𝑘 centers:
• Need to sample each point 𝑥 with probability 

max
𝐶

Cost 𝑥,𝐶

Cost 𝑋,𝐶
instead of 

Cost 𝑥,𝐶

Cost 𝑋,𝐶

• Need to union bound over a net of all possible sets of 𝑘
centers

Net with size
𝑛Δ

𝜀

𝑂(𝑘𝑑)



Sensitivity Sampling

• The quantity 𝑠 𝑥 = max
𝐶

Cost 𝑥,𝐶

Cost 𝑋,𝐶
is called the sensitivity of 

𝑥 and intuitively measures how “important” the point 𝑥 is

• The total sensitivity of 𝑋 is σ𝑥∈𝑋 𝑠(𝑥) and quantifies how 
many points will be sampled into 𝑋′ through 
importance/sensitivity sampling (before the union bound)



Online Sensitivity

• In a data stream, computing/approximating sensitivity 
𝑠 𝑥 = max

𝐶

Cost 𝑥,𝐶

Cost 𝑋,𝐶
requires seeing the entire dataset 𝑋, 

but then it is too late to sample 𝑥

• We define the online sensitivity of 𝑥𝑡 with respect to a 
stream 𝑥1, … , 𝑥𝑛 to be 𝜑 𝑥𝑡 = max

𝐶

Cost 𝑥𝑡,𝐶

Cost 𝑋𝑡,𝐶
, where 𝑋𝑡 =

𝑥1, … , 𝑥𝑡, which intuitively measures how “important” the 
point 𝑥 is SO FAR



Online Sensitivity

• Streaming algorithm: sample each point 𝑥𝑡 with probability 

𝑝 𝑥𝑡 = min 1,
𝑘𝑑

𝜀2 ⋅ polylog 𝑛Δ ⋅ 𝜑(𝑥𝑡)

• How to compute (or approximate) 𝜑(𝑥𝑡)?



Online Sensitivity

• Observation: we can use a 1 + 𝜀 -coreset to obtain a  
1 + 𝜀 -approximation to 𝜑 𝑥𝑡

• Use samples obtained from online sensitivity sampling at 
each time 𝑡 − 1 to obtain a 1 + 𝜀 -approximation to 𝜑 𝑥𝑡

• Can then perform online sensitivity sampling at time 𝑡 and 
by induction, at all times in the stream



Online Sensitivity

• Streaming algorithm: sample each point 𝑥𝑡 with probability 

𝑝 𝑥𝑡 = min 1,
𝑘𝑑

𝜀2 ⋅ polylog 𝑛Δ ⋅ 𝜑(𝑥𝑡)

• Given our new bounds on total sensitivity, we get a coreset 

of size σ𝑡 𝑝 𝑥𝑡 =
𝑘2𝑑

𝜀2 ⋅ polylog 𝑛Δ

• Sampling is done online, can view as a new stream 𝑋′



𝜑 𝑥𝑡 = max
𝐶: 𝐶 ≤𝑘

Cost 𝑥𝑡 , 𝐶

Cost 𝑋𝑡, 𝐶
= max

𝐶: 𝐶 ≤𝑘

Cost 𝑥𝑡, 𝐶

σ𝑖=1
𝑡 Cost 𝑥𝑖 , 𝐶
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= max

𝐶: 𝐶 ≤𝑘

Cost 𝑥𝑡, 𝐶

σ𝑖=1
𝑡 Cost 𝑥𝑖 , 𝐶

Point has sensitivity 1
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𝜑 𝑥𝑡 = max
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Sum of Online Sensitivity

• Sum of online sensitivities can be at least 𝑘

• How large can it be? 



𝜑 𝑥𝑡 = max
𝐶: 𝐶 ≤𝑘

Cost 𝑥𝑡 , 𝐶

Cost 𝑋𝑡, 𝐶
= max

𝐶: 𝐶 ≤𝑘

Cost 𝑥𝑡, 𝐶

σ𝑖=1
𝑡 Cost 𝑥𝑖 , 𝐶
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= max

𝐶: 𝐶 ≤𝑘

Cost 𝑥𝑡, 𝐶

σ𝑖=1
𝑡 Cost 𝑥𝑖 , 𝐶



𝜑 𝑥𝑡 = max
𝐶: 𝐶 ≤𝑘
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𝜑 𝑥𝑡 = max
𝐶: 𝐶 ≤𝑘

Cost 𝑥𝑡 , 𝐶

Cost 𝑋𝑡, 𝐶
= max

𝐶: 𝐶 ≤𝑘

Cost 𝑥𝑡, 𝐶

σ𝑖=1
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𝜑 𝑥𝑡 = max
𝐶: 𝐶 ≤𝑘

Cost 𝑥𝑡 , 𝐶

Cost 𝑋𝑡, 𝐶
= max

𝐶: 𝐶 ≤𝑘

Cost 𝑥𝑡, 𝐶

σ𝑖=1
𝑡 Cost 𝑥𝑖 , 𝐶

Partition the sum of the sensitivities by each cluster



Sum of Online Sensitivity

• Intuition: The sum of the sensitivities in each cluster induced by 
OPT is at most 1

• Since there are 𝑘 clusters, the sum of the sensitivities is 𝑂𝑧(𝑘)

• The sum of the online sensitivities is 𝑂𝑧(𝑘 log2 𝑛𝑑Δ)



Insertion-Only Algorithm

1. Perform online sensitivity sampling to 
implicitly create new stream 𝑋′

2. In parallel, run merge-and-reduce on 𝑋′



Insertion-Only Summary

• New stream 𝑋′ has length 
𝑘2𝑑

𝜀2 ⋅ polylog 𝑛Δ

• Can run merge-and-reduce framework on 𝑋′

• Recall total space used by merge-and-reduce was 𝑓 𝑘,
log 𝑛

𝜀
⋅

𝑂(log 𝑛) points, but 𝑛 was the length of the stream

• Total space is 𝑓 𝑘,
log |𝑆′|

𝜀
⋅ 𝑂(log |𝑋′|) points with 𝑓 𝑘,

1

𝜀
=

෨𝑂
𝑘

𝜀2 ⋅ min 𝑘,
1

𝜀𝑧 , i.e., 𝑜(log 𝑛)



Questions?Format

▪Part 1: Background

▪Part 2: Insertion-Only Streams

▪Part 3: 𝑘-Median on Dynamic 
Streams

▪Part 4: (𝑘, 𝑧)-Clustering on 
Dynamic Streams



Insertion-Deletion Streams

• Use first pass to estimate sensitivity of each point 𝑛 in the 
stream

• Use second pass to perform sensitivity sampling 



Sensitivity Estimation

• Sensitivity of a point 𝑥 is 𝑠 𝑥 ≔ max
𝐶: 𝐶 ≤𝑘

Cost 𝑥, 𝐶

Cost 𝑋, 𝐶

• Suppose 𝑆 is the optimal (capacitated) set of 𝑘 centers, so 
that Cost 𝑋, 𝑆 ≤ Cost(𝑋, 𝐶) for all sets 𝐶 of 𝑘 centers

• Claim: max
𝐶: 𝐶 ≤𝑘

4⋅2𝑧⋅Cost 𝑥,𝐶

Cost 𝐶,𝑆 +Cost(𝑋,𝑆)
is a good approximation of 

the sensitivity 𝑠 𝑥



Sensitivity Estimation

Cost 𝑥, 𝐶

Cost 𝑋, 𝐶
=

4 ⋅ Cost 𝑥, 𝐶

4 ⋅ Cost 𝑋, 𝐶

≤
4 ⋅ Cost 𝑥, 𝐶

2 ⋅ Cost 𝑋, 𝐶 + 2 ⋅ Cost(𝑋, 𝑆)

≤
4 ⋅ Cost 𝑥, 𝐶

Cost 𝑋, 𝐶 + 2 ⋅ Cost(𝑋, 𝑆)

≤
4 ⋅ 2𝑧 ⋅ Cost 𝑥, 𝐶

Cost 𝐶, 𝑆 + Cost(𝑋, 𝑆)

(Optimality of 𝑆)

(Triangle Inequality)



Sensitivity Estimation

4 ⋅ 2𝑧 ⋅ Cost 𝑥, 𝐶

Cost 𝐶, 𝑆 + Cost(𝑋, 𝑆)
≤

2𝑂(𝑧) ⋅ Cost 𝑥, 𝐶

Cost 𝑋, 𝑆 + Cost 𝑋, 𝐶

≤
2𝑂(𝑧) ⋅ Cost 𝑥, 𝐶

Cost 𝑋, 𝐶

(Triangle Inequality)



Sensitivity Estimation

• Takeaway: Can use a “good” (capacitated) set 𝑆 of 𝑘 centers 
along with an approximation of its cost to estimate 
sensitivities 𝑠 𝑥 of all points

• How to find such an estimate?

• Cannot use online sensitivity sampling or merge-and-reduce 
anymore



Quadtree Embedding



Quadtree Embedding

Δ



Quadtree Embedding

Δ



Quadtree Embedding

Δ



Quadtree Embedding

6 6

7

Total cost: 0
Level cost: 0

Δ



Quadtree Embedding
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7

2
+
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Quadtree Embedding

• Earth mover distance: EMD 𝐶, 𝑋 denotes the 𝑘-median 
clustering cost Cost 𝐶, 𝑋 for 𝑋 using a (capacitated) set 𝐶 of 
centers

• Quadtree embedding: For a (weighted) set 𝐶 of centers, the 
quadtree embedding outputs 𝑍 such that

EMD 𝐶, 𝑋 ≤ 𝑂 𝑑 ⋅ 𝑍 ≤⋅ 𝑂 𝑑1.5 (log 𝑘 + log log Δ) EMD(𝐶, 𝑋)



Quadtree Embedding

• Quadtree embedding produces a vector of dimension Δ𝑂(𝑑)

• The computation of 𝑍 is the sum of the level costs, which is 
the 𝐿1 norm of the frequency vector

• There exists a one-pass streaming algorithm that outputs a 
constant-factor approximation to the 𝐿1 norm of a frequency 
vector in ℝ𝑛 and uses 𝑂 log 𝑛 bits of space [Indyk06]



𝐿1 Norm Approximation

• There exists a one-pass streaming algorithm that outputs a 
constant-factor approximation to the 𝐿1 norm of an 
underlying vector 𝑥 in ℝ𝑛 and uses 𝑂 log 𝑛 bits of space 
[Indyk06]

• Generate vector 𝑣1, … 𝑣𝛼 ∈ ℝ𝑛 of Cauchy random variables 
(ratio of two normal random variables) for 𝛼 = 𝑂(1)

• Output median𝑖∈ 𝛼 𝑣1, 𝑥 , … , 𝑣𝛼 , 𝑥



EMD Sketch

• EMD sketch: There exists a one-pass streaming algorithm 
that uses 𝑂 𝑑 log Δ bits of space and outputs 𝑍 such that

EMD 𝐶, 𝑋 ≤ 𝑂 𝑑 ⋅ 𝑍 ≤⋅ 𝑂 𝑑1.5 (log 𝑘 + log log Δ) EMD(𝐶, 𝑋)



EMD Sketch

• [BackursIndykRazenshteynWoodruff16] To estimate 
min

𝐶, 𝐶 ≤𝑘
Cost(𝐶, 𝑋), it suffices to union bound over a net of 

size exp 𝑘𝑑 log log Δ

• EMD sketch: There exists a one-pass streaming algorithm 
that uses 𝑂 𝑘𝑑2 log Δ log log Δ bits of space and outputs 
𝑍 (as well as the capacitated set of centers) such that

OPT ≤ 𝑂 𝑑 ⋅ 𝑍 ≤⋅ 𝑂 𝑑1.5 (log 𝑘 + log log Δ) OPT



EMD Sketch Summary

• EMD sketch: There exists a one-pass streaming algorithm 
that uses 𝑂 𝑘𝑑2 log Δ log log Δ bits of space and outputs 
𝑍 (as well as the capacitated set of centers) such that

• Recall: Can use a “good” (capacitated) set 𝑆 of 𝑘 centers 
along with an approximation of its cost to estimate 
sensitivities 𝑠 𝑥 of all points

OPT ≤ 𝑂 𝑑 ⋅ 𝑍 ≤⋅ 𝑂 𝑑1.5 (log 𝑘 + log log Δ) OPT



First Pass to Second Pass

• We can set up the EMD sketch in the first pass of the stream

• At the end of the first pass of the stream, we have a data 
structure that can estimate the sensitivity 𝑠 𝑥 for any query 
𝑥 ∈ Δ 𝑑

• In the second pass of the stream, we would like to perform 
sensitivity sampling



Sensitivity Sampling

• DO NOT: Sample each point 𝑥 in the stream with probability 
proportional to 𝑠 𝑥
• Does not work for insertion-deletion streams

• DO: Sample each point 𝑥 in the universe Δ 𝑑 into a 
substream 𝑈′ with probability proportional to 𝑠(𝑥)
• 𝑈′ can have a large number of points
• 𝑈′ can have a small number of points at the end of the 

stream



Sensitivity Sampling

• Sample each point 𝑥 in the universe Δ 𝑑 into a substream 𝑈′
with probability proportional to 𝑠(𝑥)

• 𝑈′ will have poly 𝑘, 𝑑,
1

𝜀2 points at the end of the stream

• Use sparse recovery on 𝑈′



Sparse Recovery

• Given a stream 𝑈′ that induces a frequency vector of length 
𝑛 with 𝑠 nonzero entries, there exists an algorithm that uses 
𝑂 𝑠 log 𝑛 bits of space and recovers the nonzero 
coordinates and their frequencies

• Since elements are sampled into 𝑈′ by their sensitivities, 
recovering 𝑈′ by sparse recovery corresponds to sensitivity 
sampling!



𝑘-Median Framework

• First pass: set up the EMD sketch

• Second pass: 
• Sample elements into a 

substream 𝑈′ with probability 
proportional to their 
sensitivities

• Run sparse recovery on 𝑈′



Questions?Format

▪Part 1: Background

▪Part 2: Insertion-Only Streams

▪Part 3: 𝑘-Median on Dynamic 
Streams

▪Part 4: (𝑘, 𝑧)-Clustering on 
Dynamic Streams



𝑘-Median Framework

• First pass: set up the EMD sketch

• Second pass: 
• Sample elements into a 

substream 𝑈′ with probability 
proportional to their 
sensitivities

• Run sparse recovery on 𝑈′
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Quadtree Embedding
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Quadtree Embedding

• If 𝑥 and 𝑐 have distance 𝛼Δ, the probability it will be split by 

a grid of length 
Δ

2𝑖 is roughly 
2𝑖

𝛼

• Expected cost for 𝑘-median is 𝛼Δ

• Expected cost of 𝑘-means is 
Δ2

2𝑖𝛼
, i.e., distortion 2𝑖𝛼3

• Recall: worse EMD sketch guarantee corresponds to larger 
oversampling necessary for sensitivity sampling



Quadtree Embedding

• Intuition: Bad distortion results when pairs of points are “too 
close” to the boundary of the hypergrid

• Goal: Prevent this case from happening

• Fix: When a query center is too close to the boundary of the 
hypergrid, create another center on the opposite cell!
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Quadtree Embedding

• Make a new center when distance from query center and 

hypergrid with length 2𝑖 is at most 
2𝑖

𝑑 log Δ

• In expectation (over 𝑑 dimensions, log Δ levels of the 
hypergrid, and 𝑘 query centers), 𝑂(𝑘) new centers are 
created



Wasserstein Sketch

• Wasserstein-𝑧 distance: WASSD 𝐶, 𝑋 denotes the (𝑘, 𝑧)-
clustering cost Cost 𝐶, 𝑋 for 𝑋 a (capacitated) set 𝐶 of 
centers

• Wasserstein sketch: There exists a one-pass streaming 
algorithm that uses 𝑂 𝑑 log Δ bits of space and outputs 𝑍
such that

𝑍 ≤⋅ 𝑂 𝑑1+0.5𝑧 log𝑧−1 Δ ⋅ WASSD(𝐶, 𝑋)



Applying 𝑘-Median Framework to 𝑘-Means

• First pass: set up the Wasserstein sketch

• Second pass: 
• Sample elements into a substream 𝑈′ with probability 

proportional to their sensitivities
• Run sparse recovery on 𝑈′



Applying 𝑘-Median Framework to 𝑘-Means

• Problem: Because the distortion of the Wasserstein 
embedding is 𝑂 𝑑1+0.5𝑧 log𝑧−1 Δ , we need to sample 
𝑂 𝑑2 log Δ points for 𝑘-means

• For 𝑘-median, we stored all the points, using 𝑂 𝑑 log Δ bits 
of space per point

• Cannot afford to store all points explicitly here 



Applying 𝑘-Median Framework to 𝑘-Means

• Cannot afford to store all points explicitly here 

• Instead, store offset of each point from one of the centers of 
near-optimal solution 𝑆

• For each point 𝑥, let 𝑐𝑥 be the closest center of 𝑆 and 𝑦 =
𝑐𝑥 − 𝑥

• Round 𝑦 coordinate-wise to nearest power of 1 +

poly
𝜀

log 𝑛𝑑Δ
and store the vector of exponents 𝑦



Quadtree Embedding

Δ
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Quadtree Embedding

Δ

𝑥

𝑐𝑥

𝑦 = 𝑐𝑥 − 𝑥



Quadtree Embedding

Δ
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𝑘-Means Framework

• First pass: set up the 
Wasserstein-𝑧 sketch

• Second pass: 
• Sample offsets of elements 

into a substream 𝑈′ with 
probability proportional to 
their sensitivities

• Run sparse recovery on 𝑈′



𝑘-Means Framework

• We show the resulting samples forms a semi-coreset

• Sample 𝑂 𝑑2 log Δ points, each point using 𝑑 ⋅

𝑂 log
1

𝜀
+ log log 𝑛𝑑Δ

• Total space:  ෨𝑂
1

𝜀2 ⋅ poly 𝑑, 𝑘, log log 𝑛Δ words



Summary

• Insertion-only for (𝑘, 𝑧)-clustering: One-pass streaming algorithm 

that uses ෨𝑂
𝑑𝑘

𝜀2 ⋅ min 𝑘,
1

𝜀𝑧 ⋅ poly(log log 𝑛Δ) words of space

• Insertion-deletion for 𝑘-median and 𝑘-means: Two-pass streaming 

algorithms that use ෨𝑂
1

𝜀2 ⋅ poly 𝑑, 𝑘, log log 𝑛Δ words of space

• Lower bounds: Even 2-approximation to the (𝑘, 𝑧)-clustering cost 
from a weighted subset of the input or correctness at all times uses 
Ω log2 𝑛 bits of space on insertion-deletion streams in one pass



Bounding Sum of Online Sensitivity

• Let 𝑋 = 𝑥1, … , 𝑥𝑛 ⊂ Δ 𝑑 and let 𝑡𝑖−1 and 𝑡𝑖 be times between 
which the optimal cost of the stream doubles 

• Let 𝐾𝑖 be the optimal clustering at time 𝑡𝑖 and 𝜋: 𝑋𝑡𝑖
→ 𝐾𝑖 be 

the mapping

• By triangle inequality,

Cost 𝑥𝑡, 𝐶

Cost 𝑋𝑡, 𝐶
≤

2𝑧−1 ⋅ Cost 𝑥𝑡, 𝜋 𝑥𝑡

Cost 𝑋𝑡, 𝐶
+

2𝑧−1 ⋅ Cost 𝜋(𝑥𝑡), 𝐶

Cost 𝑋𝑡, 𝐶



Bounding Sum of Online Sensitivity

• For 𝑡 ∈ 𝑡𝑖−1, 𝑡𝑖 , we have Cost 𝑋𝑡, 𝐶 >
1

2
⋅ OPT𝑖

• By triangle inequality,
Cost 𝜋 𝑥𝑡 , 𝐶

Cost 𝑋𝑡, 𝐶
≤ 3 ⋅

2𝑧−1

𝑆𝑡
, where 𝑆𝑡 is the 

subset of 𝑋𝑡 that maps to 𝜋 𝑥𝑡

𝜑 𝑥𝑡 =
Cost 𝑥𝑡, 𝐶

Cost 𝑋𝑡, 𝐶
≤

2𝑧−1 ⋅ Cost 𝑥𝑡, 𝜋 𝑥𝑡

Cost 𝑋𝑡, 𝐶
+

2𝑧−1 ⋅ Cost 𝜋(𝑥𝑡), 𝐶

Cost 𝑋𝑡, 𝐶



𝑡∈ 𝑡𝑖−1,𝑡𝑖

𝜑 𝑥𝑡 ≤ 

𝑡∈ 𝑡𝑖−1,𝑡𝑖

2𝑧−1 + 3 ⋅
22𝑧−2

𝑆𝑡



Bounding Sum of Online Sensitivity

• Since 𝑆𝑡 is the subset of 𝑋𝑡 that maps to 𝜋 𝑥𝑡 and can be one 

of 𝑘 subsets, then σ𝑡 𝑆𝑡 ≤ 𝑘 1 + ⋯ +
1

𝑛
≤ 𝑘 log 𝑛

• Taking the sum over 𝑂(log 𝑛𝑑Δ) possible indices 𝑖, the sum of 
the online sensitivities is 𝑂(22𝑧𝑘 log2 𝑛𝑑Δ)



𝑡∈ 𝑡𝑖−1,𝑡𝑖

𝜑 𝑥𝑡 ≤ 

𝑡∈ 𝑡𝑖−1,𝑡𝑖

2𝑧−1 + 3 ⋅
22𝑧−2

𝑆𝑡



Lower Bound

• Any one-pass algorithm on insertion-deletion streams that 
outputs a 2-approximation to the (𝑘, 𝑧)-clustering cost at all 
times in the stream with 𝑑 = Ω log 𝑛 must use Ω log2 𝑛 bits 
of space

• Augmented Equality with Large Domain: Alice and Bob get 
𝐴, 𝐵 ∈ 𝑀 𝑛 and Bob gets 𝑗 ∈ [𝑛], 𝐴1, … , 𝐴𝑗−1 and must 
whether 𝐴𝑗 = 𝐵𝑗

• Any protocol that succeeds w.h.p. requires Ω 𝑛 log 𝑀
information cost



Lower Bound

• Augmented Equality with Large Domain: Alice and Bob get 
𝐴, 𝐵 ∈ 𝑀 𝑛 and Bob gets 𝑗 ∈ [𝑛], 𝐴1, … , 𝐴𝑗−1 and must 
whether 𝐴𝑗 = 𝐵𝑗

• Any protocol that succeeds w.h.p. requires Ω 𝑛 log 𝑀
information cost

• Set 𝑘 = 1 and write 𝑋𝑖 ∈ 0,1 log 𝑀 in binary and insert 
100𝑧 log2 𝑛 𝑖 copies of 𝑋𝑖

• Information cost of solving 𝑂 𝑛 copies of the problem



Lower Bound

• Any one-pass algorithm on insertion-deletion streams that 
outputs a 2-approximation to the (𝑘, 𝑧)-clustering cost from a 
weighted subset of the input must use Ω log2 𝑛 bits of space

• Augmented Index with Large Domain: Alice gets 𝑋 ∈ 2𝑡 𝑚 and 
Bob gets 𝑗 ∈ [𝑚], 𝑋1, … , 𝑋𝑗−1 and must output 𝑋𝑗

• Any constant probability protocol requires Ω 𝑚𝑡 bits of 
communication



Lower Bound

• Augmented Index with Large Domain: Alice gets 𝑋 ∈ 2𝑡 𝑚 and 
Bob gets 𝑗 ∈ [𝑚], 𝑋1, … , 𝑋𝑗−1 and must output 𝑋𝑗

• Any constant probability protocol requires Ω 𝑚𝑡 bits of 
communication

• For 𝑡 = 𝑚 = log 𝑛, map each point 𝑋𝑖 to a lattice point between 
7𝑖𝑑 and 9𝑖𝑑, add 𝑘 − 1 points at ∞

• Any 2-approximation using a weighted subset of the points must 
contain the exact point
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