Streaming Euclidean k-median
and k-means with o(logn)
Space

Vincent Cohen-Addad
David P. Woodruff

Samson Zhou

Carnegie
Mellon
University

Goal: Cluster a stream of n points using o(logn) space

Clustering

* Goal: Given input dataset X, partition X so that “similar” points are in
the same cluster and “different” points are in different clusters

k-Clustering

* Goal: Given input dataset X, partition X so that “similar” points are in
the same cluster and “different” points are in different clusters

* There can be at most k different clusters

k-Clustering

* Question: How do we measure the “quality” of each clustering?

k-Clustering

* Question: How do we measure the “quality” of each clustering?
* Assign a “center” c¢; to each cluster

* Have a cost function induced by c; for all of the points P; assigned to
cluster i

k-Clustering

* Question: How do we measure the “quality” of each clustering?
* Assign a “center” c¢; to each cluster

* Have a cost function induced by c; for all of the points P; assigned to
cluster i

* Assume points are in metric space with distance function dist(:,-)
* Define Cost(P;, ¢;) to be a function of {dist(x, ¢;) }xep,

k-Clustering

* Question: How do we measure the “quality” of each clustering?

* Have a cost function induced by c¢; for all of the points P; assigned to
cluster i

* Define Cost(P;, ¢;) to be a function of {dist(x, ¢;) }xep,

* Suppose the set of centersis C = {cq, ..., Ci}

* Define clustering cost Cost(X, C) to be a function of
{dist(x, C) }xec

k-Clustering

* Define clustering cost Cost(X, C) to be a function of
{diSt(X, C)}xEC

k-Clustering

* Define clustering cost Cost(X, C) to be a function of
{diSt(x; C)}xEC

* k-center: Cost(X,C) = max dist(x, C)
X

k-Clustering

* Define clustering cost Cost(X, C) to be a function of
{diSt(x; C)}xEC 9

* k-center: Cost(X,C) = max dist(x, C)
X
* k-median: Cost(X, C) =).,y dist(x, C)

k-Clustering

* Define clustering cost Cost(X, C) to be a function of

{diSt(x; C)}xEC 9
(1)?
(1)?

o k-center: Cost(X, C) = maxdist(x, C) ()2
XEX O—

* k-median: Cost(X, C) =).,y dist(x, C) _

* k-means: Cost(X,C) = erx(dist(x, C))2 ()?

k-Clustering

* Define clustering cost Cost(X, C) to be a function of

tdist(x, C) }xec 9
ok

* k-center: Cost(X,C) = max dist(x, C)
X
* k-median: Cost(X, C) =).,y dist(x, C) .
| 2
» k-means: Cost(X, C) = Xex(dist(x, €)) ()
* (k, z)-clustering: Cost(X, C) = Xex(dist(x, C))Z |

Euclidean k-Clustering

* For Euclidean k-clustering, input points X = x4, ..., x,, are in
R? (for us, they will be in [A]%:= {1,2, ..., A}?)

o dist(x,y) = \/(xl —v.1)? + -+ (xz — y4)? is the Euclidean
distance

* (k, z)-clustering problem:

. . .] Z
S, Cost(X,C) = C:rlréllrslkilxex(dlst(x, C))

The Streaming Model

* Input: Updates to an underlying data set X that arrive
sequentially

e OQutput: Evaluation (or approximation) of a given function
* Goal: Use space sublinear in the size n of the input X

o)

O o

o0 o
o)

©O o
o O o©
o O

Goal: Cluster a stream of n points using o(logn) space

Our Results (Insertion-Only)

* There exists a one-pass algorithm on insertion-only streams that
outputs (1 + &)-approximation for (k, z)-clustering for all times

in the stream and uses O (g) - min (k, 8—12) - poly(loglognA)
words of space

* Our algorithm outputs (1 + ¢)-coreset constructions for (k, z)-
clustering for all times in the stream

Our Results (Insertion-Deletion Impossibility)

* Any one-pass algorithm on insertion-deletion streams that
outputs a 2-approximation to the (k, z)-clustering cost at all
times in the stream with d = Q(logn) must use Q(log? n)
bits of space

* Any one-pass algorithm on insertion-deletion streams that
outputs a 2-approximation to the (k, z)-clustering cost from
a weighted subset of the input must use ((log? n) bits of
space

Our Results (Insertion-Deletion Two-Pass)

* There exists a two-pass algorithm on insertion-deletion

streams that outputs a (1 + €)-coreset construction for k-

. . ~ (1
median and k-means clustering that uses O (—) :

2
poly(d, k,loglognA) words of space)

* Result generalizesto z € [1,2]

Our Results (Sum of the Online Sensitivities)

» Sum of the online sensitivities of a set of n points in R for
(k, z)-clustering is at most O (k log? (ndA))

Coreset

e Subset X' of representative
points of X for a specific
clustering objective

* Cost(X,C) = Cost(X', ()
for all sets C with [C| = k

Coreset

e Subset X' of representative
points of X for a specific
clustering objective

* Cost(X,C) = Cost(X', ()
for all sets C with [C| = k

Coreset

e Subset X' of representative
points of X for a specific
clustering objective

* Cost(X,C) = Cost(X', ()
for all sets C with [C| = k

Coreset (Formal Definition)

* Given a set X and an accuracy parameter € > 0, we say a set
X' with weight function w is an (1 + &)-multiplicative
coreset for a cost function Cost, if for all queries C with
IC| < k, we have

(1 —¢)Cost(X,C) < Cost(X',C,w) < (1 + ¢)Cost(X, C)

|

(k, z)-clustering: Cost(X',C,w) = Y ex, Ww(x) (dist(x, C))Z

Coreset Constructions

* Let O(f) denote f - polylog(f)

* For (k, z)-clustering, there exist coreset constructions that

only require O (5) - min (k l) weighted points of the input

g2 -

[Cohen-AddadLarsenSaulpicSchweighelshohn22]

* Independent of input size n

(k, z)-Clustering in the Streaming Model

* Merge-and-reduce framework

* Suppose there exists a (1 4+ ¢)-coreset construction for

1

(k, z)-clustering that uses [(k, —) weighted input points

&E

t

—~

k

* Partition the stream into blocks containing f (k,

0,

(

€2+z

)

logn

) points

E

(k, z)-Clustering in the Streaming Model

logn

* Partition the stream into blocks containing f (k,) points

E
E

* Create a (1 -+)-coreset for each block

logn
€

* Create a (1 + oz n)-coreset for the set of points formed by
/the union of two coresets for each block

Reduce [
Merge

(k, z)-Clustering in the Streaming Model

logn

* Partition the stream into blocks containing f (k,) points

E
E

* Create a (1 -+)-coreset for each block

logn
€

* Create a (1 + oz n)-coreset for the set of points formed by

the union of two coresets for each block

Cs1 C's 2 Cs3.3 C3 4

(k, z)-Clustering in the Streaming Model

* There are O(log n) levels

E

* Each coreset is a (1 | log n)-coreset of two coresets

c \logn
* Total approximation is (1 +) = (1+ 0(¢))

logn

C3 .1 (:3,2 (_-.:'3_13 L’:3;4

(k, z)-Clustering in the Streaming Model

* Suppose there exists a (1 + ¢)-coreset construction for
(k, z)-clustering that uses [(k, 1) weighted input points

€
logn

* Partition the stream into blocks containing f (k,) points

€
logn

E

) - 0(logn) points
T
k

For k-means clustering, this is O (8—4 - log3 n) points

* Total spaceis f (k,

(k, z)-Clustering in the Streaming Model

* Suppose there exists a (1 + ¢)-coreset construction for
(k, z)-clustering that uses [(k, 1) weighted input points

E

* Partition the stream into blocks containing f (k, 105 n) points
* Total space is [(k, 105 n) - 0(logn) points
4 A

* For (k, z)-clustering, there exist coreset constructions that
. =(k . 1 . : :
only require O (—) - min (k —) weighted points of the input

g2 ' ez

[Cohen-AddadlLarsenSaulpicSchweighelshohn22] y

(k, z)-Clustering in the Streaming Model

* Suppose there exists a (1 + ¢)-coreset construction for
(k, z)-clustering that uses [(k, 1) weighted input points

E

* Partition the stream into blocks containing f (k, lof n) points
* Total space is [(k, 105 n) - 0(logn) points
4 A

Do there exist streaming algorithms for (k, z)-clustering
that use o(log n) words of space?

Streaming algorithm

Words of Memory

HKO7], z € {1,2}

A [dkit> d+z
O (s@fd) log n)

HMO04|, z € {1,2}

O (d—ﬁ logzd"'2 n)

Che09], 2 € {1,2}

0 (4 o'

[FL11], z € {1,2} (log! T2)
Sensitivity and rejection sampling [BFLR19] @ (d—g—)
Online sensitivity sampling, i.e., Theorem 3.5 (d—g—)
Merge-and-reduce with coreset of [CLS5522] O (d—gl ogin) (=, k)
This work, i.e., Theorem 1.1 (=,) poly(log logn)

Format

" Part 1: Background
" Part 2: Insertion-Only Streams

" Part 3: k-Median on Dynamic
Streams

" Part 4: (k, z)-Clustering on
Dynamic Streams

Questions?

Coreset Construction and Sampling

* Consider a fixed set X and a fixed set C of k centers, which
induces a fixed cost Cost(X, C)

o
O o
OOOO
A A
O o © o
QOA OO
o O e

Coreset Construction and Sampling

* Consider a fixed set X and a fixed set C of k centers, which
induces a fixed cost Cost(X, C)

* A simple way to obtain X' with Cost(X’, C) =~ Cost(X,C) is
to uniformly sample points of X into X’

o
O o
OOOO
A A
O o © o
QOA OO
o O e

Coreset Construction and Sampling

* Consider a fixed set X and a fixed set C of k centers, which
induces a fixed cost Cost(X, C)

* Uniform sampling needs a lot of samples if there is a single
point that greatly contributes to Cost(X, C)

Coreset Construction and Sampling

* Fix: Importance sampling, sample each point x € X into X’
with probability proportional Cost(x, C), i.e., Cost(x,C)/
Cost(X, C)

Coreset Construction and Sampling

* Fix: Importance sampling, sample each point x € X into X’
with probability proportional Cost(x, C), i.e., Cost(x,C)/
Cost(X, C)

. . 1
* Importance sampling only needs X' to have size O (—) to

82
achieve (1 + €)-approximation to Cost(X, C)

Coreset Construction and Sampling

* Importance sampling only needs X' to have size O (812) to
achieve (1 + €)-approximation to Cost(X, C)
* What about a different choice C of k centers?

O o A O

Coreset Construction and Sampling

* Importance sampling only needs X' to have size O (812) to
achieve (1 + €)-approximation to Cost(X, C)

* To handle all possible sets of k centers:

* Need to sample each point x with probability

max Cost(x.C) instead of Cost(x.C)
c Cost(X,C) Cost(X,C)

* Need to union bound over a net of all possible sets of k

centers

Coreset Construction and Sampling

* Importance sampling only needs X' to have size O (812) to
achieve (1 + €)-approximation to Cost(X, C)

* To handle all possible sets of k centers:

* Need to sample each point x with probability

max Cost(x.C) instead of Cost(x.C)
c Cost(X,C) Cost(X,C)

* Need to union bound over a net of all possible sets of k

centers ‘

0(kd)
Net with size (%)

E

Sensitivity Sampling

. : . Cost(x,C) . o
The quantity s(x) = max oy IS called the sensitivity of

x and intuitively measures how “important” the point x is

* The total sensitivity of X is),,.cx S(x) and quantifies how
many points will be sampled into X' through
importance/sensitivity sampling (before the union bound)

Online Sensitivity

* [n a data stream, computing/approximating sensitivity

- Cost(x,C) : : :
s(x) = max -~ o requires seeing the entire dataset X,

but then it is too late to sample x

* We define the online sensitivity of x; with respect to a
Cost(x,C)
stream x4, ..., X, to be @(x;) = max - oy where X; =
X1, ..., X¢, Which intuitively measures how ’Fi'mportant” the

point x is SO FAR

Online Sensitivity

* Streaming algorithm: sample each point x; with probability
. kd
p(x;) = min (1,5 - polylog(na) - ¢ (x;))

* How to compute (or approximate) ¢ (x;)?

Online Sensitivity

* Observation: we can use a (1 + €)-coreset to obtain a
(1 + &)-approximation to @ (x;)

* Use samples obtained from online sensitivity sampling at
each time t — 1 to obtain a (1 + €)-approximation to ¢ (x;)

* Can then perform online sensitivity sampling at time ¢ and
by induction, at all times in the stream

Online Sensitivity

e Streaming algorithm sample each point x; with probability
p(x;) = min (1,5 - polylog(na) - ¢ (x;))

* Given our new bounds on total sensitivity, we get a coreset

2
of size)., p(x;) = k - polylog(nA)

« Sampling is done online, can view as a new stream X'

Cost(x,, C) Cost(x, C)

X;) = max = Mmax

Cost(x, C) Cost(x, C)

X;) = max = Mmax

A

Point has sensitivity 1 O

Cost(x, C) Cost(x, C)

X;) = max = Mmax

A

Point has sensitivity 1

O A

Point has sensitivity 1 QA

A

Cost(x, C) Cost(x, C)

X;) = max = Mmax

Point has sensitivity 1
O

Point has sensitivity 1

A A

Point has sensitivity 1 QA

A

Cost(x, C) Cost(x, C)

X;) = max = Mmax

Point has sensitivity 1

A

Point has sensitivity 1 Point has sensitivity 1

QA O
Point has sensitivity 1 QA

A

Cost(x, C) Cost(x, C)

X;) = max = Mmax

Point has sensitivity 1

A

Point has sensitivity 1 Point has sensitivity 1

A CA
Point has sensitivity 1 QA

A

Point has sensitivity 1

Cost(x, C) Cost(x, C)

X;) = max = Mmax

Point has sensitivity 1

A

Point has sensitivity 1 Point has sensitivity 1

A CA
Point has sensitivity 1 QA

A

Point has sensitivity 1
o A

Point has sensitivity 1

Cost(x, C) Cost(x, C)

X;) = max = Mmax

Point has sensitivity 1

A
Point has sensitivity 1 Point has sensitivity 1
QA CA
Point has sensitivity 1 QA
: . @)
Point has sensitivity 1 Point has sensitivity 1

&

Point has sensitivity 1

Sum of Online Sensitivity

e Sum of online sensitivities can be at least k

* How large can it be?

Cost(x,, C) Cost(x, C)

X;) = max = Mmax

Cost(x, C) Cost(x¢, C)

dX

@(x¢) = ma m
t c:clsk Yt_, Cost(x;, C)

c:|c|§k Cost(X;, C)

Cost(x,, C) Cost(x, C)

X;) = max = Mmax

Cost(x,, C) Cost(x, C)

X;) = max = Mmax

() Cost(x;, C) Cost(x;, C)
X;) = ma -
PLxe C:lClé(k COSt(Xt, C) C:|C|=k §:=1 C()St(xi, C)

Partition the sum of the sensitivities by each cluster
A

O
OQ*

00 o A

Sum of Online Sensitivity

* Intuition: The sum of the sensitivities in each cluster induced by
OPT isat most 1

* Since there are k clusters, the sum of the sensitivities is 0, (k)

* The sum of the online sensitivities is 0, (k log® ndA)

Insertion-Only Algorithm

1. Perform online sensitivity sampling to
implicitly create new stream X’

2. In parallel, run merge-and-reduce on X'

Insertion-Only Summary

2

* New stream X' has Iength k - polylog(nA)

e Can run merge-and-reduce framework on X'

* Recall total space used by merge-and-reduce was f (k, 105 n) :
O (log n) points, but n was the length of the stream

* Total spaceis [(k loggls l) - 0(log |X'|) points with f (k, i) =

5(k) mln(k 1),le o(logn)

g2 ez

Format

" Part 1: Background
" Part 2: Insertion-Only Streams

" Part 3: k-Median on Dynamic
Streams

" Part 4: (k, z)-Clustering on
Dynamic Streams

Questions?

Insertion-Deletion Streams

* Use first pass to estimate sensitivity of each point n in the
stream

* Use second pass to perform sensitivity sampling

Sensitivity Estimation

. o _ . o Cost(x, C)
Sensitivity of a point x is s(x) = C{Pﬁé{k Cost(X, C)

* Suppose S is the optimal (capacitated) set of k centers, so
that Cost(X,S) < Cost(X, C) for all sets C of k centers

. 4.2%.Cost(x,C)
e Claim: max
C:|C|<k Cost(C,S)+Cost(X,S)

the sensitivity s(x)

is a good approximation of

Sensitivity Estimation

Cost(x,C) 4 - Cost(x, C)
Cost(X,C) 4 - Cost(X,C)
4 - Cost(x, C)

(Optimality of S) = 2 - Cost(X,C) + 2 - Cost(X,S)
_ 4 - Cost(x, C)
~ Cost(X,C) + 2 - Cost(X,S)
4. 2% . Cost(x, C)
(Triangle Inequality) = Cost(C, S) + Cost(X,S)

Sensitivity Estimation

4 .27 . Cost(x, C) 20(2) . Cost(x, C)

<
Cost(C,S) + Cost(X,S) ~ Cost(X,S) + Cost(X, C)
(Triangle Inequality)

_ 20(2) . Cost(x, C)
Cost(X, C)

Sensitivity Estimation

e Takeaway: Can use a “good” (capacitated) set S of k centers
along with an approximation of its cost to estimate
sensitivities s(x) of all points

e How to find such an estimate?

e Cannot use online sensitivity sampling or merge-and-reduce
anymore

Quadtree Embedding

Quadtree Embedding

Quadtree Embedding

Quadtree Embedding

Quadtree Embedding

Total cost: O
Level cost: 0

Quadtree Embedding

A
Total cost: > 7

A
Level cost: > 7

Quadtree Embedding

Total cost:

G+%)

A
Level cost: e 11

Quadtree Embedding

* Earth mover distance: EMD(C, X) denotes the k-median
clustering cost Cost(C, X) for X using a (capacitated) set C of
centers

* Quadtree embedding: For a (weighted) set C of centers, the
quadtree embedding outputs Z such that

EMD(C,X) < 0(Vd) - Z <- 0(d*)(logk + loglog A) EMD(C, X)

Quadtree Embedding

* Quadtree embedding produces a vector of dimension A9 (@)

* The computation of Z is the sum of the level costs, which is
the L; norm of the frequency vector

* There exists a one-pass streaming algorithm that outputs a
constant-factor approximation to the L; norm of a frequency
vector in R™ and uses O (log n) bits of space [Indyk06]

L1 Norm Approximation

* There exists a one-pass streaming algorithm that outputs a
constant-factor approximation to the L; nhorm of an

underlying vector x in R™ and uses O (logn) bits of space
[IndykO06]

* Generate vector v4, ... v, € R"™ of Cauchy random variables
(ratio of two normal random variables) fora = 0(1)

* Output median;e[q){[{vy, X}|, ..., [(vg, X)|}

EMD Sketch

* EMD sketch: There exists a one-pass streaming algorithm
that uses O(d log A) bits of space and outputs Z such that

EMD(C,X) < 0(Vd) - Z <- 0(d*>)(logk + loglog A) EMD(C, X)

EMD Sketch

* [BackursindykRazenshteynWoodruff16] To estimate

cr|%i|r<lk Cost(C, X), it suffices to union bound over a net of

size exp(kd(loglogA))

 EMD sketch: There exists a one-pass streaming algorithm

that uses O(kd?log A (loglogA)) bits of space and outputs
Z (as well as the capacitated set of centers) such that

OPT < 0(\/3) -7 <-0(d**)(logk + loglog A) OPT

EMD Sketch Summary

* EMD sketch: There exists a one-pass streaming algorithm

that uses O(kal2 log A (loglog A)) bits of space and outputs
Z (as well as the capacitated set of centers) such that

OPT < 0(\/3) .7 <-0(d**)(logk + loglog A) OPT

e Recall: Can use a “good” (capacitated) set S of k centers
along with an approximation of its cost to estimate
sensitivities s(x) of all points

First Pass to Second Pass

* We can set up the EMD sketch in the first pass of the stream

* At the end of the first pass of the stream, we have a data
structure that can estimate the sensitivity s(x) for any query

x € [A]9

* In the second pass of the stream, we would like to perform
sensitivity sampling

Sensitivity Sampling

* DO NOT: Sample each point x in the stream with probability
proportional to s(x)

* Does not work for insertion-deletion streams
 DO: Sample each point x in the universe [A]% into a
substream U’ with probability proportional to s(x)

* U’ can have a large number of points

* U’ can have a small number of points at the end of the
stream

Sensitivity Sampling

» Sample each point x in the universe [A]? into a substream U’
with probability proportional to s(x)

U’ will have poly (k, d, giz) points at the end of the stream

 Use sparse recovery on U’

Sparse Recovery

* Given a stream U’ that induces a frequency vector of length
n with s nonzero entries, there exists an algorithm that uses

O(slogn) bits of space and recovers the nonzero
coordinates and their frequencies

* Since elements are sampled into U’ by their sensitivities,

recovering U’ by sparse recovery corresponds to sensitivity
sampling!

k-Median Framework

* First pass: set up the EMD sketch

* Second pass:

 Sample elements into a
substream U’ with probability
proportional to their
sensitivities

* Run sparse recovery on U’

Format

" Part 1: Background
" Part 2: Insertion-Only Streams

" Part 3: k-Median on Dynamic
Streams

" Part 4: (k, z)-Clustering on
Dynamic Streams

Questions?

k-Median Framework

* First pass: set up the EMD sketch

* Second pass:

 Sample elements into a
substream U’ with probability
proportional to their
sensitivities

* Run sparse recovery on U’

Quadtree Embedding

A
Level cost: e 11

Quadtree Embedding

AZ
Llevel cost: — - 11
16

Quadtree Embedding

* If x and ¢ have dlstance al, the probability it will be split by
a grid of Iength — S roughly —

* Expected cost for k-median is a/A
AZ

* Expected cost of k-means is i i.e., distortion 2'a?

e Recall: worse EMD sketch guarantee corresponds to larger
oversampling necessary for sensitivity sampling

Quadtree Embedding

* Intuition: Bad distortion results when pairs of points are “too
close” to the boundary of the hypergrid

* Goal: Prevent this case from happening

* Fix: When a query center is too close to the boundary of the
hypergrid, create another center on the opposite cell!

Quadtree Embedding

Quadtree Embedding

Quadtree Embedding

Quadtree Embedding

Quadtree Embedding

Quadtree Embedding

* Make a new center when distance from query center and
Zi
dlog A

hypergrid with length 2¢ is at most

* In expectation (over d dimensions, log A levels of the
hypergrid, and k query centers), O (k) new centers are
created

Wasserstein Sketch

» Wasserstein-z distance: WASSD(C, X) denotes the (k, z)-
clustering cost Cost(C, X) for X a (capacitated) set C of
centers

e \Wasserstein sketch: There exists a one-pass streaming
algorithm that uses O(d log A) bits of space and outputs Z
such that

7 <-0(d**9>Z]og? 1 A) - WASSD(C, X)

Applying k-Median Framework to k-Means

* First pass: set up the Wasserstein sketch

* Second pass:

* Sample elements into a substream U’ with probability
proportional to their sensitivities

* Run sparse recovery on U’

Applying k-Median Framework to k-Means

* Problem: Because the distortion of the Wasserstein
embedding is 0(d'*%>?log?~! A), we need to sample
0(d*log A) points for k-means

* For k-median, we stored all the points, using O(d log A) bits
of space per point

e Cannot afford to store all points explicitly here

Applying k-Median Framework to k-Means

e Cannot afford to store all points explicitly here

* Instead, store offset of each point from one of the centers of
near-optimal solution S

* For each point x, let ¢, be the closest center of S and y =
C, — X

* Round y coordinate-wise to nearest power of 1 +

E ~
poly (log ndA) and store the vector of exponents y

Quadtree Embedding

Quadtree Embedding

Quadtree Embedding

k-Means Framework

* First pass: set up the
Wasserstein-z sketch

* Second pass:

e Sample offsets of elements
into a substream U’ with
probability proportional to
their sensitivities

* Run sparse recovery on U’

k-Means Framework

* We show the resulting samples forms a semi-coreset

* Sample 0(d?log A) points, each point using d -
0, (logé + loglog ndA)

» Total space: O (giz) - poly(d, k,loglognA) words

ey nmyahnnqa

nersi baika Welain p.‘k: ’ J h\

cmcm6o " dankje "
u;lhank ramas
=== mochchakke am

- &
o e kwkhunkp .go ra|hhina|th agal *
Uh”gadﬂ ‘ SUkrlleyn?nakamh g, 200 =5 Yt

el
* Insertion-only for (k, z)-clustering: One-pass streaming algorithm

apadh leat

Summary

that uses O (82) - min (k, 3_12) - poly(loglognA) words of space
* Insertion-deletion for k-median and k-means: Two-pass streaming

algorithms that use O () poly(d, k,loglog nA) words of space

* Lower bounds: Even 2-approximation to the (k, z)-clustering cost
from a weighted subset of the input or correctness at all times uses
((log? n) bits of space on insertion-deletion streams in one pass

Bounding Sum of Online Sensitivity

elet X = {xq,...,x,} € [A]? and let t;_; and t; be times between
which the optimal cost of the stream doubles

* Let K; be the optimal clustering at time ¢; and m: X;, — K; be
the mapping

* By triangle inequality,

Cost(x,, C) _ 2271 . Cost(xg, m(xy)) 2771 - Cost(m(xyp), €)
Cost(X., C) — Cost(X, C) | Cost(X, C)

Bounding Sum of Online Sensitivity

Cost(x, C) _ 2771, Cost(xt,n(xt)) | 2271 . Cost(m(x,), C)

P(x) = Cost(X;,C) — Cost(X, C) | Cost(X;, C)
*Fort € (t;_q,t;], we have Cost(X,, C) > = - OPT;
Cost(m(x;), €) ZZ 1

<3.

* By triangle inequality, , Where S is the

Cost(X, C)
subset of X; that maps to m(x;)

2 o (x,) < 2 (zz—1+3-2|2;_|2>

te(tl 1 t te(tl—l)tl]

M

Bounding Sum of Online Sensitivity

2 0 (x,) < Z (22-1+3-2|2;_|2>

te(ti—q.t;] te(ti—q,t;]

* Since S; is the subset of X; that maps to w(x;) and can be one
of k subsets, then), S; < k (1 + -+ %) < klogn

* Taking the sum over O(logndA) possible indices i, the sum of
the online sensitivities is 0(24%k log? ndA)

Lower Bound

* Any one-pass algorithm on insertion-deletion streams that
outputs a 2-approximation to the (k, z)-clustering cost at all
times in the stream with d = Q(logn) must use Q(log? n) bits
of space

 Augmented Equality with Large Domain: Alice and Bob get
A,B € [M]" and Bob gets j € [n], A, ..., Aj_; and must
whether A; = B;

* Any protocol that succeeds w.h.p. requires (.(nlog M)
information cost

Lower Bound

 Augmented Equality with Large Domain: Alice and Bob get
A,B € [M]" and Bob gets j € [n], A, ..., Aj_1 and must
whether 4; = B;

* Any protocol that succeeds w.h.p. requires Q(nlog M)
information cost

*Set k = 1 and write X; € {0,1}1°8 M in binary and insert
(100%log? n)' copies of X;

* Information cost of solving O(+/n) copies of the problem

Lower Bound

* Any one-pass algorithm on insertion-deletion streams that
outputs a 2-approximation to the (k, z)-clustering cost from a
weighted subset of the input must use Q(log? n) bits of space

e Augmented Index with Large Domain: Alice gets X € [2¢]™ and
Bob gets j € [m], X4, ..., X;_; and must output X;

* Any constant probability protocol requires Q)(mt) bits of
communication

Lower Bound

m

» Augmented Index with Large Domain: Alice gets X € [2%]™ and

Bob gets j € [m]|, X3, ..., X;_1 and must output X;

* Any constant probability protocol requires (L(mt) bits of
communication

* For t = m = logn, map each point X; to a lattice point between
7'% and 9'¢, add k — 1 points at oo

* Any 2-approximation using a weighted subset of the points must
contain the exact point

	Slide 1: Streaming Euclidean k-median and k-means with o open paren log , n close paren Space
	Slide 2
	Slide 3: Clustering
	Slide 4: k-Clustering
	Slide 5: k-Clustering
	Slide 6: k-Clustering
	Slide 7: k-Clustering
	Slide 8: k-Clustering
	Slide 9: k-Clustering
	Slide 10: k-Clustering
	Slide 11: k-Clustering
	Slide 12: k-Clustering
	Slide 13: k-Clustering
	Slide 14: Euclidean k-Clustering
	Slide 15: The Streaming Model
	Slide 16
	Slide 17: Our Results (Insertion-Only)
	Slide 18: Our Results (Insertion-Deletion Impossibility)
	Slide 19: Our Results (Insertion-Deletion Two-Pass)
	Slide 20: Our Results (Sum of the Online Sensitivities)
	Slide 21: Coreset
	Slide 22: Coreset
	Slide 23: Coreset
	Slide 24: Coreset (Formal Definition)
	Slide 25: Coreset Constructions
	Slide 26: open paren k ,z close paren -Clustering in the Streaming Model
	Slide 27: open paren k ,z close paren -Clustering in the Streaming Model
	Slide 28: open paren k ,z close paren -Clustering in the Streaming Model
	Slide 29: open paren k ,z close paren -Clustering in the Streaming Model
	Slide 30: open paren k ,z close paren -Clustering in the Streaming Model
	Slide 31: open paren k ,z close paren -Clustering in the Streaming Model
	Slide 32: open paren k ,z close paren -Clustering in the Streaming Model
	Slide 33
	Slide 34: Questions?
	Slide 35: Coreset Construction and Sampling
	Slide 36: Coreset Construction and Sampling
	Slide 37: Coreset Construction and Sampling
	Slide 38: Coreset Construction and Sampling
	Slide 39: Coreset Construction and Sampling
	Slide 40: Coreset Construction and Sampling
	Slide 41: Coreset Construction and Sampling
	Slide 42: Coreset Construction and Sampling
	Slide 43: Sensitivity Sampling
	Slide 44: Online Sensitivity
	Slide 45: Online Sensitivity
	Slide 46: Online Sensitivity
	Slide 47: Online Sensitivity
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56: Sum of Online Sensitivity
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 63: Sum of Online Sensitivity
	Slide 64: Insertion-Only Algorithm
	Slide 65: Insertion-Only Summary
	Slide 66: Questions?
	Slide 67: Insertion-Deletion Streams
	Slide 68: Sensitivity Estimation
	Slide 69: Sensitivity Estimation
	Slide 70: Sensitivity Estimation
	Slide 71: Sensitivity Estimation
	Slide 72: Quadtree Embedding
	Slide 73: Quadtree Embedding
	Slide 74: Quadtree Embedding
	Slide 75: Quadtree Embedding
	Slide 76: Quadtree Embedding
	Slide 77: Quadtree Embedding
	Slide 78: Quadtree Embedding
	Slide 79: Quadtree Embedding
	Slide 80: Quadtree Embedding
	Slide 81: cap L sub 1 Norm Approximation
	Slide 82: EMD Sketch
	Slide 83: EMD Sketch
	Slide 84: EMD Sketch Summary
	Slide 85: First Pass to Second Pass
	Slide 86: Sensitivity Sampling
	Slide 87: Sensitivity Sampling
	Slide 88: Sparse Recovery
	Slide 89: k-Median Framework
	Slide 90: Questions?
	Slide 91: k-Median Framework
	Slide 92: Quadtree Embedding
	Slide 93: Quadtree Embedding
	Slide 94: Quadtree Embedding
	Slide 95: Quadtree Embedding
	Slide 96: Quadtree Embedding
	Slide 97: Quadtree Embedding
	Slide 98: Quadtree Embedding
	Slide 99: Quadtree Embedding
	Slide 100: Quadtree Embedding
	Slide 101: Quadtree Embedding
	Slide 102: Wasserstein Sketch
	Slide 103: Applying k-Median Framework to k-Means
	Slide 104: Applying k-Median Framework to k-Means
	Slide 105: Applying k-Median Framework to k-Means
	Slide 106: Quadtree Embedding
	Slide 107: Quadtree Embedding
	Slide 108: Quadtree Embedding
	Slide 109: k-Means Framework
	Slide 110: k-Means Framework
	Slide 111: Summary
	Slide 113: Bounding Sum of Online Sensitivity
	Slide 114: Bounding Sum of Online Sensitivity
	Slide 115: Bounding Sum of Online Sensitivity
	Slide 116: Lower Bound
	Slide 117: Lower Bound
	Slide 118: Lower Bound
	Slide 119: Lower Bound

