Streaming Euclidean k-median and k-means with $o(\log n)$ Space

Vincent Cohen-Addad

David P. Woodruff

Samson Zhou

Goal: Cluster a stream of n points using $o(\log n)$ space

• Goal: Given input dataset X, partition X so that "similar" points are in the same cluster and "different" points are in different clusters

- Goal: Given input dataset X, partition X so that "similar" points are in the same cluster and "different" points are in different clusters
- There can be at most k different clusters

• Question: How do we measure the "quality" of each clustering?

Question: How do we measure the "quality" of each clustering?

• Assign a "center" c_i to each cluster

• Have a cost function induced by c_i for all of the points P_i assigned to cluster i

- Question: How do we measure the "quality" of each clustering?
- Assign a "center" c_i to each cluster

- Have a cost function induced by c_i for all of the points P_i assigned to cluster i
 - Assume points are in metric space with distance function dist(·,·)
 - Define $Cost(P_i, c_i)$ to be a function of $\{dist(x, c_i)\}_{x \in P_i}$

Question: How do we measure the "quality" of each clustering?

- Have a cost function induced by c_i for all of the points P_i assigned to cluster i
 - Define $Cost(P_i, c_i)$ to be a function of $\{dist(x, c_i)\}_{x \in P_i}$
- Suppose the set of centers is $C = \{c_1, \dots, c_k\}$
 - Define clustering cost Cost(X, C) to be a function of $\{dist(x, C)\}_{x \in C}$

• Define clustering cost Cost(X, C) to be a function of $\{dist(x, C)\}_{x \in C}$

• Define clustering cost Cost(X, C) to be a function of $\{dist(x, C)\}_{x \in C}$

• k-center: $Cost(X, C) = \max_{x \in X} dist(x, C)$

• Define clustering cost Cost(X, C) to be a function of $\{\operatorname{dist}(x,C)\}_{x\in C}$

- k-center: $Cost(X, C) = \max_{x \in X} dist(x, C)$ k-median: $Cost(X, C) = \sum_{x \in X} dist(x, C)$

• Define clustering cost Cost(X, C) to be a function of $\{\operatorname{dist}(x,C)\}_{x\in C}$

- k-center: $Cost(X, C) = \max_{x \in X} dist(x, C)$ k-median: $Cost(X, C) = \sum_{x \in X} dist(x, C)$
- k-means: $Cost(X, C) = \sum_{x \in X} (dist(x, C))^2$

• Define clustering cost Cost(X, C) to be a function of $\{dist(x, C)\}_{x \in C}$

- k-center: $Cost(X, C) = \max_{x \in X} dist(x, C)$
- k-median: $Cost(X, C) = \sum_{x \in X} dist(x, C)$
- k-means: $Cost(X, C) = \sum_{x \in X} (dist(x, C))^2$
- (k, z)-clustering: $Cost(X, C) = \sum_{x \in X} (dist(x, C))^z$

Euclidean k-Clustering

• For Euclidean k-clustering, input points $X = x_1, ..., x_n$ are in \mathbb{R}^d (for us, they will be in $[\Delta]^d \coloneqq \{1,2,...,\Delta\}^d$)

• dist $(x, y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_d - y_d)^2}$ is the Euclidean distance

• (k, z)-clustering problem:

$$\min_{C:|C|\leq k} \operatorname{Cost}(X,C) = \min_{C:|C|\leq k} \sum_{x\in X} \left(\operatorname{dist}(x,C)\right)^{Z}$$

The Streaming Model

- Input: Updates to an underlying data set X that arrive sequentially
- Output: Evaluation (or approximation) of a given function
- Goal: Use space *sublinear* in the size n of the input X

Goal: Cluster a stream of n points using $o(\log n)$ space

Our Results (Insertion-Only)

• There exists a one-pass algorithm on insertion-only streams that outputs $(1 + \varepsilon)$ -approximation for (k, z)-clustering for all times in the stream and uses $\tilde{O}\left(\frac{dk}{\varepsilon^2}\right) \cdot \min\left(k, \frac{1}{\varepsilon^z}\right) \cdot \operatorname{poly}(\log\log n\Delta)$ words of space

• Our algorithm outputs $(1 + \varepsilon)$ -coreset constructions for (k, z)-clustering for *all times in the stream*

Our Results (Insertion-Deletion Impossibility)

• Any one-pass algorithm on insertion-deletion streams that outputs a 2-approximation to the (k,z)-clustering cost at all times in the stream with $d = \Omega(\log n)$ must use $\Omega(\log^2 n)$ bits of space

• Any one-pass algorithm on insertion-deletion streams that outputs a 2-approximation to the (k, z)-clustering cost from a weighted subset of the input must use $\Omega(\log^2 n)$ bits of space

Our Results (Insertion-Deletion Two-Pass)

• There exists a two-pass algorithm on insertion-deletion streams that outputs a $(1 + \varepsilon)$ -coreset construction for k-median and k-means clustering that uses $\tilde{O}\left(\frac{1}{\varepsilon^2}\right)$ · poly $(d, k, \log \log n\Delta)$ words of space

• Result generalizes to $z \in [1,2]$

Our Results (Sum of the Online Sensitivities)

• Sum of the online sensitivities of a set of n points in \mathbb{R}^d for (k,z)-clustering is at most $O(k\log^2(nd\Delta))$

Coreset

- Subset X' of representative points of X for a specific clustering objective
- $Cost(X, C) \approx Cost(X', C)$ for all sets C with |C| = k

Coreset

 Subset X' of representative points of X for a specific clustering objective

• $Cost(X, C) \approx Cost(X', C)$ for all sets C with |C| = k

Coreset

 Subset X' of representative points of X for a specific clustering objective

• $Cost(X, C) \approx Cost(X', C)$ for all sets C with |C| = k

Coreset (Formal Definition)

• Given a set X and an accuracy parameter $\varepsilon > 0$, we say a set X' with weight function w is an $(1 + \varepsilon)$ -multiplicative coreset for a cost function Cost, if for all queries C with $|C| \le k$, we have

$$(1 - \varepsilon)\operatorname{Cost}(X, C) \leq \operatorname{Cost}(X', C, w) \leq (1 + \varepsilon)\operatorname{Cost}(X, C)$$

$$(k, z)\text{-clustering: } \operatorname{Cost}(X', C, w) = \sum_{x \in X} w(x) \cdot \left(\operatorname{dist}(x, C)\right)^{z}$$

Coreset Constructions

• Let $\tilde{O}(f)$ denote $f \cdot \text{polylog}(f)$

• For (k, z)-clustering, there exist coreset constructions that only require $\tilde{O}\left(\frac{k}{\varepsilon^2}\right) \cdot \min\left(k, \frac{1}{\varepsilon^2}\right)$ weighted points of the input [Cohen-AddadLarsenSaulpicSchweighelshohn22]

Independent of input size n

Merge-and-reduce framework

• Suppose there exists a $(1 + \varepsilon)$ -coreset construction for (k, z)-clustering that uses $f\left(k, \frac{1}{\varepsilon}\right)$ weighted input points $\int_{\tilde{O}\left(\frac{k}{c^2+z}\right)}^{\infty}$

- Partition the stream into blocks containing $f\left(k, \frac{\log n}{\varepsilon}\right)$ points
- Create a $\left(1 + \frac{\varepsilon}{\log n}\right)$ -coreset for each block
- Create a $\left(1 + \frac{\varepsilon}{\log n}\right)$ -coreset for the set of points formed by the union of two coresets for each block

Reduce

Merge

- Partition the stream into blocks containing $f\left(k, \frac{\log n}{\varepsilon}\right)$ points
- Create a $\left(1 + \frac{\varepsilon}{\log n}\right)$ -coreset for each block
- Create a $\left(1 + \frac{\varepsilon}{\log n}\right)$ -coreset for the set of points formed by the union of two coresets for each block

- There are $O(\log n)$ levels
- Each coreset is a $\left(1 + \frac{\varepsilon}{\log n}\right)$ -coreset of two coresets
- Total approximation is $\left(1 + \frac{\varepsilon}{\log n}\right)^{\log n} = (1 + O(\varepsilon))$

- Suppose there exists a $(1 + \varepsilon)$ -coreset construction for (k, z)-clustering that uses $f\left(k, \frac{1}{\varepsilon}\right)$ weighted input points
- Partition the stream into blocks containing $f\left(k, \frac{\log n}{\varepsilon}\right)$ points
- Total space is $f\left(k, \frac{\log n}{\varepsilon}\right) \cdot O(\log n)$ points

For k-means clustering, this is $\tilde{O}\left(\frac{k}{\varepsilon^4} \cdot \log^3 n\right)$ points

- Suppose there exists a $(1 + \varepsilon)$ -coreset construction for (k, z)-clustering that uses $f\left(k, \frac{1}{\varepsilon}\right)$ weighted input points
- Partition the stream into blocks containing $f\left(k, \frac{\log n}{\varepsilon}\right)$ points
- Total space is $f\left(k, \frac{\log n}{\varepsilon}\right) \cdot O(\log n)$ points
 - For (k, z)-clustering, there exist coreset constructions that only require $\tilde{O}\left(\frac{k}{\varepsilon^2}\right) \cdot \min\left(k, \frac{1}{\varepsilon^2}\right)$ weighted points of the input [Cohen-AddadLarsenSaulpicSchweighelshohn22]

- Suppose there exists a $(1 + \varepsilon)$ -coreset construction for (k, z)-clustering that uses $f\left(k, \frac{1}{\varepsilon}\right)$ weighted input points
- Partition the stream into blocks containing $f\left(k, \frac{\log n}{\varepsilon}\right)$ points
- Total space is $f\left(k, \frac{\log n}{\varepsilon}\right) \cdot O(\log n)$ points

Do there exist streaming algorithms for (k, z)-clustering that use $o(\log n)$ words of space?

Streaming algorithm	Words of Memory
[HK07], $z \in \{1, 2\}$	$\tilde{\mathcal{O}}\left(\frac{dk^{1+z}}{\varepsilon^{\mathcal{O}(d)}}\log^{d+z}n\right)$
$[HM04], z \in \{1, 2\}$	$\tilde{\mathcal{O}}\left(\frac{dk}{\varepsilon^d}\log^{2d+2}n\right)$
[Che09], $z \in \{1, 2\}$	$\tilde{\mathcal{O}}\left(\frac{d^2k^2}{\varepsilon^2}\log^8 n\right)$
[FL11], $z \in \{1, 2\}$	$\tilde{\mathcal{O}}\left(\frac{d^2k}{\varepsilon^{2z}}\log^{1+2z}n\right)$
Sensitivity and rejection sampling [BFLR19]	$\tilde{\mathcal{O}}\left(\frac{d^2k^2}{\varepsilon^2}\log n\right)$
Online sensitivity sampling, i.e., Theorem 3.5	$\tilde{\mathcal{O}}\left(\frac{d^2k^2}{\varepsilon^2}\log n\right)$
Merge-and-reduce with coreset of [CLSS22]	$\tilde{\mathcal{O}}\left(\frac{dk}{\varepsilon^2}\log^4 n\right)\cdot \min\left(\frac{1}{\varepsilon^z},k\right)$
This work, i.e., Theorem 1.1	$\tilde{\mathcal{O}}\left(\frac{dk}{\varepsilon^2}\right) \cdot \min\left(\frac{1}{\varepsilon^z}, k\right) \cdot \operatorname{poly}(\log \log n)$

Format

- Part 1: Background
- Part 2: Insertion-Only Streams
- Part 3: *k*-Median on Dynamic Streams
- Part 4: (k, z)-Clustering on Dynamic Streams

Questions?

Coreset Construction and Sampling

• Consider a fixed set X and a fixed set C of K centers, which induces a fixed cost Cost(X,C)

Coreset Construction and Sampling

- Consider a fixed set X and a fixed set C of K centers, which induces a fixed cost Cost(X,C)
- A simple way to obtain X' with $Cost(X', C) \approx Cost(X, C)$ is to uniformly sample points of X into X'

- Consider a fixed set X and a fixed set C of K centers, which induces a fixed cost Cost(X,C)
- Uniform sampling needs a lot of samples if there is a single point that greatly contributes to Cost(X, C)

• Fix: Importance sampling, sample each point $x \in X$ into X' with probability proportional Cost(x, C), i.e., Cost(x, C)/ Cost(X, C)

• Fix: Importance sampling, sample each point $x \in X$ into X' with probability proportional Cost(x, C), i.e., Cost(x, C)/ Cost(X, C)

• Importance sampling only needs X' to have size $O\left(\frac{1}{\varepsilon^2}\right)$ to achieve $(1 + \varepsilon)$ -approximation to Cost(X, C)

- Importance sampling only needs X' to have size $O\left(\frac{1}{\varepsilon^2}\right)$ to achieve $(1 + \varepsilon)$ -approximation to Cost(X, C)
- What about a different choice C of k centers?

- Importance sampling only needs X' to have size $O\left(\frac{1}{\varepsilon^2}\right)$ to achieve $(1 + \varepsilon)$ -approximation to Cost(X, C)
- To handle all possible sets of k centers:
 - Need to sample each point x with probability $\max_{C} \frac{\text{Cost}(x,C)}{\text{Cost}(X,C)} \text{ instead of } \frac{\text{Cost}(x,C)}{\text{Cost}(X,C)}$
 - Need to union bound over a net of all possible sets of k
 centers

- Importance sampling only needs X' to have size $O\left(\frac{1}{\varepsilon^2}\right)$ to achieve $(1 + \varepsilon)$ -approximation to Cost(X, C)
- To handle all possible sets of k centers:
 - Need to sample each point x with probability $\max_{C} \frac{\text{Cost}(x,C)}{\text{Cost}(X,C)} \text{ instead of } \frac{\text{Cost}(x,C)}{\text{Cost}(X,C)}$
 - Need to union bound over a net of all possible sets of k centers

Net with size
$$\left(\frac{n\Delta}{\varepsilon}\right)^{O(kd)}$$

Sensitivity Sampling

• The quantity $s(x) = \max_{C} \frac{\text{Cost}(x,C)}{\text{Cost}(x,C)}$ is called the *sensitivity* of x and intuitively measures how "important" the point x is

• The total sensitivity of X is $\sum_{x \in X} s(x)$ and quantifies how many points will be sampled into X' through importance/sensitivity sampling (before the union bound)

- In a data stream, computing/approximating sensitivity $s(x) = \max_{C} \frac{\text{Cost}(x,C)}{\text{Cost}(x,C)}$ requires seeing the entire dataset X, but then it is too late to sample x
- We define the *online sensitivity* of x_t with respect to a stream x_1, \dots, x_n to be $\varphi(x_t) = \max_C \frac{\text{Cost}(x_t, C)}{\text{Cost}(X_t, C)}$, where $X_t = x_1, \dots, x_t$, which intuitively measures how "important" the point x is SO FAR

• Streaming algorithm: sample each point x_t with probability $p(x_t) = \min\left(1, \frac{kd}{\varepsilon^2} \cdot \operatorname{polylog}(n\Delta) \cdot \varphi(x_t)\right)$

• How to compute (or approximate) $\varphi(x_t)$?

• Observation: we can use a $(1 + \varepsilon)$ -coreset to obtain a $(1 + \varepsilon)$ -approximation to $\varphi(x_t)$

• Use samples obtained from online sensitivity sampling at each time t-1 to obtain a $(1+\varepsilon)$ -approximation to $\varphi(x_t)$

ullet Can then perform online sensitivity sampling at time t and by induction, at all times in the stream

• Streaming algorithm: sample each point x_t with probability $p(x_t) = \min\left(1, \frac{kd}{\varepsilon^2} \cdot \operatorname{polylog}(n\Delta) \cdot \varphi(x_t)\right)$

• Given our new bounds on total sensitivity, we get a coreset of size $\sum_t p(x_t) = \frac{k^2 d}{\varepsilon^2} \cdot \text{polylog}(n\Delta)$

• Sampling is done online, can view as a new stream X'

$$\varphi(x_t) = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\operatorname{Cost}(X_t, C)} = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\sum_{i=1}^t \operatorname{Cost}(x_i, C)}$$

$$\varphi(x_t) = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\operatorname{Cost}(X_t, C)} = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\sum_{i=1}^t \operatorname{Cost}(x_i, C)}$$

$$\varphi(x_t) = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\operatorname{Cost}(X_t, C)} = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\sum_{i=1}^t \operatorname{Cost}(x_i, C)}$$

Point has sensitivity 1 🖎

$$\varphi(x_t) = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\operatorname{Cost}(X_t, C)} = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\sum_{i=1}^t \operatorname{Cost}(x_i, C)}$$

Point has sensitivity 1

Point has sensitivity 1 🖎

$$\varphi(x_t) = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\operatorname{Cost}(X_t, C)} = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\sum_{i=1}^t \operatorname{Cost}(x_i, C)}$$

Point has sensitivity 1

Point has sensitivity 1

0

Point has sensitivity 1 🖎

$$\varphi(x_t) = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\operatorname{Cost}(X_t, C)} = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\sum_{i=1}^t \operatorname{Cost}(x_i, C)}$$

Point has sensitivity 1

Point has sensitivity 1

Point has sensitivity 1 🖎

Point has sensitivity 1

$$\varphi(x_t) = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\operatorname{Cost}(X_t, C)} = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\sum_{i=1}^t \operatorname{Cost}(x_i, C)}$$

Point has sensitivity 1

Point has sensitivity 1

Point has sensitivity 1 🖎

Point has sensitivity 1

Point has sensitivity 1

$$\varphi(x_t) = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\operatorname{Cost}(X_t, C)} = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\sum_{i=1}^t \operatorname{Cost}(x_i, C)}$$

Point has sensitivity 1

Point has sensitivity 1

Point has sensitivity 1 🖎

Point has sensitivity 1

Point has sensitivity 1

Point has sensitivity 1

Sum of Online Sensitivity

• Sum of online sensitivities can be at least k

How large can it be?

$$\varphi(x_t) = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\operatorname{Cost}(X_t, C)} = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\sum_{i=1}^t \operatorname{Cost}(x_i, C)}$$

$$\varphi(x_t) = \max_{C:|C| \le k} \frac{\mathrm{Cost}(x_t, C)}{\mathrm{Cost}(X_t, C)} = \max_{C:|C| \le k} \frac{\mathrm{Cost}(x_t, C)}{\sum_{i=1}^t \mathrm{Cost}(x_i, C)}$$

$$\varphi(x_t) = \max_{C:|C| \le k} \frac{\mathrm{Cost}(x_t, C)}{\mathrm{Cost}(X_t, C)} = \max_{C:|C| \le k} \frac{\mathrm{Cost}(x_t, C)}{\sum_{i=1}^t \mathrm{Cost}(x_i, C)}$$

$$\varphi(x_t) = \max_{C:|C| \le k} \frac{\mathrm{Cost}(x_t, C)}{\mathrm{Cost}(X_t, C)} = \max_{C:|C| \le k} \frac{\mathrm{Cost}(x_t, C)}{\sum_{i=1}^t \mathrm{Cost}(x_i, C)}$$

$$\varphi(x_t) = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\operatorname{Cost}(X_t, C)} = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\sum_{i=1}^t \operatorname{Cost}(x_i, C)}$$

Partition the sum of the sensitivities by each cluster

Sum of Online Sensitivity

 Intuition: The sum of the sensitivities in each cluster induced by OPT is at most 1

• Since there are k clusters, the sum of the sensitivities is $O_Z(k)$

• The sum of the online sensitivities is $O_Z(k \log^2 nd\Delta)$

Insertion-Only Algorithm

- 1. Perform online sensitivity sampling to implicitly create new stream X'
- 2. In parallel, run merge-and-reduce on X'

Insertion-Only Summary

- New stream X' has length $\frac{k^2d}{\varepsilon^2}$ · polylog $(n\Delta)$
- Can run merge-and-reduce framework on X'
- Recall total space used by merge-and-reduce was $f\left(k, \frac{\log n}{\varepsilon}\right)$ · $O(\log n)$ points, but n was the length of the stream
- Total space is $f\left(k, \frac{\log |S'|}{\varepsilon}\right) \cdot O(\log |X'|)$ points with $f\left(k, \frac{1}{\varepsilon}\right) = \tilde{O}\left(\frac{k}{\varepsilon^2}\right) \cdot \min\left(k, \frac{1}{\varepsilon^z}\right)$, i.e., $O(\log n)$

Format

- Part 1: Background
- Part 2: Insertion-Only Streams
- Part 3: *k*-Median on Dynamic Streams
- Part 4: (k, z)-Clustering on Dynamic Streams

Questions?

Insertion-Deletion Streams

• Use first pass to estimate sensitivity of each point n in the stream

Use second pass to perform sensitivity sampling

• Sensitivity of a point x is $s(x) \coloneqq \max_{C:|C| \le k} \frac{\operatorname{Cost}(x,C)}{\operatorname{Cost}(X,C)}$

• Suppose S is the optimal (capacitated) set of k centers, so that $Cost(X, S) \leq Cost(X, C)$ for all sets C of k centers

• Claim: $\max_{C:|C| \le k} \frac{4 \cdot 2^Z \cdot \mathsf{Cost}(x,C)}{\mathsf{Cost}(C,S) + \mathsf{Cost}(X,S)}$ is a good approximation of the sensitivity s(x)

$$\frac{\operatorname{Cost}(x,C)}{\operatorname{Cost}(X,C)} = \frac{4 \cdot \operatorname{Cost}(x,C)}{4 \cdot \operatorname{Cost}(X,C)}$$

$$(\operatorname{Optimality of} S) \leq \frac{4 \cdot \operatorname{Cost}(x,C)}{2 \cdot \operatorname{Cost}(X,C) + 2 \cdot \operatorname{Cost}(X,S)}$$

$$\leq \frac{4 \cdot \operatorname{Cost}(x,C)}{\operatorname{Cost}(X,C) + 2 \cdot \operatorname{Cost}(X,S)}$$

$$(\operatorname{Triangle Inequality}) \leq \frac{4 \cdot 2^z \cdot \operatorname{Cost}(x,C)}{\operatorname{Cost}(C,S) + \operatorname{Cost}(X,S)}$$

$$\frac{4 \cdot 2^{z} \cdot \text{Cost}(x, C)}{\text{Cost}(C, S) + \text{Cost}(X, S)} \leq \frac{2^{O(z)} \cdot \text{Cost}(x, C)}{\text{Cost}(X, S) + \text{Cost}(X, C)}$$
(Triangle Inequality)

$$\leq \frac{2^{O(z)} \cdot \text{Cost}(x, C)}{\text{Cost}(X, C)}$$

• Takeaway: Can use a "good" (capacitated) set S of k centers along with an approximation of its cost to estimate sensitivities s(x) of all points

- How to find such an estimate?
- Cannot use online sensitivity sampling or merge-and-reduce anymore

Quadtree Embedding

Quadtree Embedding

Total cost: 0

Level cost: 0

Total cost: $\frac{\Delta}{2} \cdot 7$ Level cost: $\frac{\Delta}{2} \cdot 7$

Total cost:

$$\left(\frac{7}{2} + \frac{11}{4}\right)\Delta$$

 $\left(\frac{7}{2} + \frac{11}{4}\right)\Delta$ Level cost: $\frac{\Delta}{4} \cdot 11$

• Earth mover distance: EMD(C, X) denotes the k-median clustering cost(C, X) for X using a (capacitated) set C of centers

• Quadtree embedding: For a (weighted) set C of centers, the quadtree embedding outputs Z such that

$$\mathrm{EMD}(C,X) \leq O\left(\sqrt{d}\right) \cdot Z \leq \cdot O(d^{1.5})(\log k + \log\log \Delta) \, \mathrm{EMD}(C,X)$$

• Quadtree embedding produces a vector of dimension $\Delta^{O(d)}$

• The computation of Z is the sum of the level costs, which is the L_1 norm of the frequency vector

• There exists a one-pass streaming algorithm that outputs a constant-factor approximation to the L_1 norm of a frequency vector in \mathbb{R}^n and uses $O(\log n)$ bits of space [Indyk06]

L_1 Norm Approximation

• There exists a one-pass streaming algorithm that outputs a constant-factor approximation to the L_1 norm of an underlying vector x in \mathbb{R}^n and uses $O(\log n)$ bits of space [Indyk06]

- Generate vector v_1 , ... $v_\alpha \in \mathbb{R}^n$ of Cauchy random variables (ratio of two normal random variables) for $\alpha = O(1)$
- Output median $_{i \in [\alpha]}\{|\langle v_1, x \rangle|, ..., |\langle v_\alpha, x \rangle|\}$

EMD Sketch

• EMD sketch: There exists a one-pass streaming algorithm that uses $O(d \log \Delta)$ bits of space and outputs Z such that

$$\text{EMD}(C, X) \le O(\sqrt{d}) \cdot Z \le O(d^{1.5})(\log k + \log \log \Delta) \text{ EMD}(C, X)$$

EMD Sketch

• [BackursIndykRazenshteynWoodruff16] To estimate $\min_{C,|C| \le k} \text{Cost}(C,X)$, it suffices to union bound over a net of size $\exp(kd(\log\log\Delta))$

• EMD sketch: There exists a one-pass streaming algorithm that uses $O(kd^2\log\Delta)$ (log log Δ) bits of space and outputs Z (as well as the capacitated set of centers) such that

OPT
$$\leq O(\sqrt{d}) \cdot Z \leq O(d^{1.5})(\log k + \log \log \Delta)$$
 OPT

EMD Sketch Summary

• EMD sketch: There exists a one-pass streaming algorithm that uses $O(kd^2\log\Delta)$ (log log Δ)) bits of space and outputs Z (as well as the capacitated set of centers) such that

OPT
$$\leq O(\sqrt{d}) \cdot Z \leq O(d^{1.5})(\log k + \log \log \Delta)$$
 OPT

• Recall: Can use a "good" (capacitated) set S of k centers along with an approximation of its cost to estimate sensitivities s(x) of all points

First Pass to Second Pass

We can set up the EMD sketch in the first pass of the stream

• At the end of the first pass of the stream, we have a data structure that can estimate the sensitivity s(x) for any query $x \in [\Delta]^d$

 In the second pass of the stream, we would like to perform sensitivity sampling

Sensitivity Sampling

- DO NOT: Sample each point x in the stream with probability proportional to s(x)
 - Does not work for insertion-deletion streams
- DO: Sample each point x in the universe $[\Delta]^d$ into a substream U' with probability proportional to s(x)
 - U' can have a large number of points
 - U' can have a small number of points at the end of the stream

Sensitivity Sampling

• Sample each point x in the universe $[\Delta]^d$ into a substream U' with probability proportional to s(x)

• U' will have poly $\left(k,d,\frac{1}{\varepsilon^2}\right)$ points at the end of the stream

• Use sparse recovery on U'

Sparse Recovery

• Given a stream U' that induces a frequency vector of length n with s nonzero entries, there exists an algorithm that uses $O(s \log n)$ bits of space and recovers the nonzero coordinates and their frequencies

• Since elements are sampled into U' by their sensitivities, recovering U' by sparse recovery corresponds to sensitivity sampling!

k-Median Framework

• First pass: set up the EMD sketch

- Second pass:
 - Sample elements into a substream U' with probability proportional to their sensitivities
 - Run sparse recovery on U'

Format

- Part 1: Background
- Part 2: Insertion-Only Streams
- Part 3: *k*-Median on Dynamic Streams
- Part 4: (k, z)-Clustering on Dynamic Streams

Questions?

k-Median Framework

• First pass: set up the EMD sketch

- Second pass:
 - Sample elements into a substream U' with probability proportional to their sensitivities
 - Run sparse recovery on U'

Level cost: $\frac{\Delta}{4} \cdot 11$

Level cost: $\frac{\Delta^2}{16} \cdot 11$

- If x and c have distance $\alpha\Delta$, the probability it will be split by a grid of length $\frac{\Delta}{2^i}$ is roughly $\frac{2^i}{\alpha}$
- Expected cost for k-median is $\alpha\Delta$
- Expected cost of k-means is $\frac{\Delta^2}{2^i \alpha}$, i.e., distortion $2^i \alpha^3$

 Recall: worse EMD sketch guarantee corresponds to larger oversampling necessary for sensitivity sampling

 Intuition: Bad distortion results when pairs of points are "too close" to the boundary of the hypergrid

Goal: Prevent this case from happening

• Fix: When a query center is too close to the boundary of the hypergrid, create another center on the opposite cell!

• Make a new center when distance from query center and hypergrid with length 2^i is at most $\frac{2^i}{d\log\Delta}$

• In expectation (over d dimensions, $\log \Delta$ levels of the hypergrid, and k query centers), O(k) new centers are created

Wasserstein Sketch

• Wasserstein-z distance: WASSD(C, X) denotes the (k, z)clustering cost Cost(C, X) for X a (capacitated) set C of
centers

• Wasserstein sketch: There exists a one-pass streaming algorithm that uses $O(d \log \Delta)$ bits of space and outputs Z such that

$$Z \le O(d^{1+0.5z} \log^{z-1} \Delta) \cdot \text{WASSD}(C, X)$$

Applying k-Median Framework to k-Means

• First pass: set up the Wasserstein sketch

- Second pass:
 - Sample elements into a substream U' with probability proportional to their sensitivities
 - Run sparse recovery on U'

Applying k-Median Framework to k-Means

• Problem: Because the distortion of the Wasserstein embedding is $O(d^{1+0.5z} \log^{z-1} \Delta)$, we need to sample $O(d^2 \log \Delta)$ points for k-means

• For k-median, we stored all the points, using $O(d \log \Delta)$ bits of space per point

Cannot afford to store all points explicitly here

Applying k-Median Framework to k-Means

- Cannot afford to store all points explicitly here
- Instead, store offset of each point from one of the centers of near-optimal solution S
- For each point x, let c_x be the closest center of S and $y = c_x x$
- Round y coordinate-wise to nearest power of $1 + \operatorname{poly}\left(\frac{\varepsilon}{\log nd\Delta}\right)$ and store the vector of exponents \tilde{y}

k-Means Framework

- First pass: set up the Wasserstein-z sketch
- Second pass:
 - Sample offsets of elements into a substream U' with probability proportional to their sensitivities
 - Run sparse recovery on U'

k-Means Framework

We show the resulting samples forms a semi-coreset

• Sample $O(d^2 \log \Delta)$ points, each point using $d \cdot O\left(\log \frac{1}{\varepsilon} + \log \log nd\Delta\right)$

• Total space: $\tilde{O}\left(\frac{1}{\varepsilon^2}\right)$ · poly $(d, k, \log \log n\Delta)$ words

Summary

- Insertion-only for (k,z)-clustering: One-pass streaming algorithm that uses $\tilde{O}\left(\frac{dk}{\varepsilon^2}\right)\cdot \min\left(k,\frac{1}{\varepsilon^z}\right)\cdot \operatorname{poly}(\log\log n\Delta)$ words of space
- Insertion-deletion for k-median and k-means: Two-pass streaming algorithms that use $\tilde{O}\left(\frac{1}{\varepsilon^2}\right) \cdot \operatorname{poly}(d,k,\log\log n\Delta)$ words of space
- Lower bounds: Even 2-approximation to the (k, z)-clustering cost from a weighted subset of the input or correctness at all times uses $\Omega(\log^2 n)$ bits of space on insertion-deletion streams in one pass

Bounding Sum of Online Sensitivity

- Let $X = \{x_1, ..., x_n\} \subset [\Delta]^d$ and let t_{i-1} and t_i be times between which the optimal cost of the stream doubles
- Let K_i be the optimal clustering at time t_i and $\pi\colon X_{t_i}\to K_i$ be the mapping
- By triangle inequality,

$$\frac{\operatorname{Cost}(x_t, C)}{\operatorname{Cost}(X_t, C)} \le \frac{2^{z-1} \cdot \operatorname{Cost}(x_t, \pi(x_t))}{\operatorname{Cost}(X_t, C)} + \frac{2^{z-1} \cdot \operatorname{Cost}(\pi(x_t), C)}{\operatorname{Cost}(X_t, C)}$$

Bounding Sum of Online Sensitivity

$$\varphi(x_t) = \frac{\mathsf{Cost}(x_t, C)}{\mathsf{Cost}(X_t, C)} \le \frac{2^{z-1} \cdot \mathsf{Cost}(x_t, \pi(x_t))}{\mathsf{Cost}(X_t, C)} + \frac{2^{z-1} \cdot \mathsf{Cost}(\pi(x_t), C)}{\mathsf{Cost}(X_t, C)}$$

- For $t \in (t_{i-1}, t_i]$, we have $Cost(X_t, C) > \frac{1}{2} \cdot OPT_i$
- By triangle inequality, $\frac{\text{Cost}(\pi(x_t), C)}{\text{Cost}(X_t, C)} \leq 3 \cdot \frac{2^{z-1}}{|S_t|}$, where S_t is the subset of X_t that maps to $\pi(x_t)$

$$\sum_{t \in (t_{i-1}, t_i]} \varphi(x_t) \le \sum_{t \in (t_{i-1}, t_i]} \left(2^{z-1} + 3 \cdot \frac{2^{2z-2}}{|S_t|} \right)$$

Bounding Sum of Online Sensitivity

$$\sum_{t \in (t_{i-1}, t_i]} \varphi(x_t) \le \sum_{t \in (t_{i-1}, t_i]} \left(2^{z-1} + 3 \cdot \frac{2^{2z-2}}{|S_t|} \right)$$

- Since S_t is the subset of X_t that maps to $\pi(x_t)$ and can be one of k subsets, then $\sum_t S_t \le k \left(1 + \dots + \frac{1}{n}\right) \le k \log n$
- Taking the sum over $O(\log nd\Delta)$ possible indices i, the sum of the online sensitivities is $O(2^{2z}k\log^2 nd\Delta)$

- Any one-pass algorithm on insertion-deletion streams that outputs a 2-approximation to the (k,z)-clustering cost *at all times* in the stream with $d = \Omega(\log n)$ must use $\Omega(\log^2 n)$ bits of space
- Augmented Equality with Large Domain: Alice and Bob get $A, B \in [M]^n$ and Bob gets $j \in [n], A_1, ..., A_{j-1}$ and must whether $A_j = B_j$
- Any protocol that succeeds w.h.p. requires $\Omega(n \log M)$ information cost

- Augmented Equality with Large Domain: Alice and Bob get $A, B \in [M]^n$ and Bob gets $j \in [n], A_1, ..., A_{j-1}$ and must whether $A_j = B_j$
- Any protocol that succeeds w.h.p. requires $\Omega(n \log M)$ information cost
- Set k = 1 and write $X_i \in \{0,1\}^{\log M}$ in binary and insert $(100^z \log^2 n)^i$ copies of X_i
- Information cost of solving $O(\sqrt{n})$ copies of the problem

- Any one-pass algorithm on insertion-deletion streams that outputs a 2-approximation to the (k, z)-clustering cost from a weighted subset of the input must use $\Omega(\log^2 n)$ bits of space
- Augmented Index with Large Domain: Alice gets $X \in [2^t]^m$ and Bob gets $j \in [m], X_1, \dots, X_{j-1}$ and must output X_j
- Any constant probability protocol requires $\Omega(mt)$ bits of communication

- Augmented Index with Large Domain: Alice gets $X \in [2^t]^m$ and Bob gets $j \in [m], X_1, ..., X_{j-1}$ and must output X_j
- Any constant probability protocol requires $\Omega(mt)$ bits of communication

- For $t = m = \log n$, map each point X_i to a lattice point between 7^{id} and 9^{id} , add k-1 points at ∞
- Any 2-approximation using a weighted subset of the points must contain the exact point