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Streaming Model

• Input: Elements of an underlying data set 𝑆, which arrives 
sequentially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑚 of the input 𝑆

1 0 1 1 1 0 0 1



Frequency Vector

• Given a set 𝑆 of 𝑚 elements from [𝑛], let 𝑓𝑖 be the frequency of 
element 𝑖. (How often it appears)

1 1 2 1 2 1 1 2 3  5, 3, 1, 0 ≔ 𝑓



Frequency Moments (𝐿𝑝 Norm)

• Given a set 𝑆 of 𝑚 elements from [𝑛], let 𝑓𝑖 be the frequency of 
element 𝑖. (How often it appears)

• Let 𝐹𝑝 be the frequency moment of the vector:

• Goal: Given a set 𝑆 of 𝑚 elements from [𝑛] and an accuracy 
parameter 𝜀, output a (1 + 𝜀)-approximation to 𝐹𝑝

• Motivation: Entropy estimation, linear regression

𝐹𝑝 = 𝑓1
𝑝
+ 𝑓2

𝑝
+⋯+ 𝑓𝑛

𝑝



Distinct Elements (𝐹0 Estimation)

• Given a set 𝑆 of 𝑚 elements from [𝑛], let 𝑓𝑖 be the frequency of 
element 𝑖. (How often it appears)

• Let 𝐹0 be the frequency moment of the vector:

• Goal: Given a set 𝑆 of 𝑚 elements from [𝑛] and an accuracy 
parameter 𝜀, output a (1 + 𝜀)-approximation to 𝐹0

• Motivation: Traffic monitoring

𝐹0 = |{𝑖 ∶ 𝑓𝑖 ≠ 0}|



1 + 𝜀 -Approximation Streaming Algorithms

• 𝑂
log 𝑛

𝜀2
space streaming algorithm for 𝐹2 estimation [AMS96]

• Johnson-Lindenstrauss transformation [JL84]

• 𝑂
1

𝜀2
+ log 𝑛 space streaming algorithm for 𝐹2 estimation [KNW10]

• Flajolet-Martin sketch [FM85]



Differential Privacy

• [DMNS06] Given 𝜀 > 0 and 𝛿 ∈ 0,1 , a randomized algorithm 
𝐴:𝑈∗ → 𝑌 is (𝜀, 𝛿)-differentially private if, for every neighboring 
frequency vectors 𝑓 and 𝑓′ and for all 𝐸 ⊆ 𝑌,

Pr 𝐴 𝑓 ∈ 𝐸 ≤ 𝑒𝜀Pr 𝐴 𝑓′ ∈ 𝐸 + 𝛿

𝐴 ≈ 𝐴



1 + 𝜀 -Approximation Streaming Algorithms

• 𝑂
log 𝑛

𝜀2
space streaming algorithm for 𝐹2 estimation [AMS96]

• Johnson-Lindenstrauss transformation [JL84]

• Johnson-Lindenstrauss transformation itself preserves DP [BBDS12]

• 𝑂
1

𝜀2
+ log 𝑛 space streaming algorithm for 𝐹2 estimation [KNW10]

• Flajolet-Martin sketch [FM85]

• Flajolet-Martin sketch itself preserves DP [SST20]



1 + 𝜀 -Approximation Streaming Algorithms

• 𝑂
log 𝑛

𝜀2
space streaming algorithm for 𝐹2 estimation [AMS96]

• Johnson-Lindenstrauss transformation [JL84]

• Johnson-Lindenstrauss transformation itself preserves DP [BBDO12]

• 𝑂
1

𝜀2
+ log 𝑛 space streaming algorithm for 𝐹2 estimation [KNW10]

• Flajolet-Martin sketch [FM85]

• Flajolet-Martin sketch itself preserves DP [SST20]

Does differential 
privacy cost more 

space?



Our Results (Differential Privacy)

Let 𝑑 be the “size” of the problem, i.e., data points from 𝑋 can be 
represented using polylog(𝑑) bits and queries from 𝑄 can be 
represented using poly(𝑑) bits.

There exists a problem 𝑃: 𝑋∗ × 𝑄 → 𝑀 such that:
1. 𝑃 can be solved non-privately using polylog(𝑑) bits of space

2. 𝑃 can be solved privately using sample and space complexity ෨𝑂 𝑑

3. Any computationally-efficient differentially-private algorithm 𝐴 for 
solving 𝑃 must use space ෩Ω 𝑑 (assuming the existence of a sub-
exponentially secure symmetric-key encryption scheme)



Adaptive Data Analysis

𝑃

𝑆 ∼ 𝑃



Adaptive Data Analysis

1. Adversary 𝐵 chooses distribution 𝑃 over a data domain 𝑋

2. Mechanism 𝐴 obtains a sample 𝑆 ∼ 𝑃𝑛 containing 𝑛 i.i.d. samples 
from 𝑃

3. For 𝑘 rounds, 𝑗 = 1,… , 𝑘
1. The adversary chooses a function ℎ𝑗: 𝑋 → {−1,0,1}, possibly as a function 

of all previous answers given by the mechanism

2. The mechanism obtains ℎ𝑗 and responds with an answer 𝑧𝑗, which is given 
to the adversary 𝐵



Adaptive Data Analysis

• Given 𝑛 samples, there exists a computationally efficient oracle that 
accurately answers ෨𝑂 𝑛2 adaptive queries [DFH+15]

• There is no computationally efficient oracle that given 𝑛 samples is 
accurate on ෩Ω 𝑛2 adaptively chosen queries (assuming the existence 
of one-way functions) [SU15]



Adaptive Data Analysis

• Given 𝑛 samples, there exists a computationally efficient oracle that 
accurately answers ෨𝑂 𝑛2 adaptive queries [DFH+15]

• There is no computationally efficient oracle that given 𝑛 samples is 
accurate on ෩Ω 𝑛2 adaptively chosen queries (assuming the existence 
of one-way functions)

Is there a more 
fundamental bottleneck for 
the ADA problem than the 

number of
samples?



Our Results (Adaptive Data Analysis)

Every computationally efficient mechanism that is (0.1, 0.1)-accurate 
for 𝑘 queries must have space complexity at least Ω( 𝑘), assuming 
the existence of one-way functions



Query vs. Communication
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Talk Structure

• Multi-instance leakage-resilient (MILR) scheme definition

• Differential privacy separation

• Space bounded adaptive data analysis

• Construction of MILR



Questions?
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Multi-Instance Leakage-Resilient Scheme

We define a multi-instance leakage-resilient scheme (or MILR 
scheme) to be a tuple of efficient algorithms (Gen, Param, Enc, Dec) :

• Gen is a randomized algorithm that takes as input a security parameter 𝜆
and outputs a 𝜆-bit secret key, 𝑥 ← Gen(1𝜆)

• Param is a randomized algorithm that takes as input a security parameter 𝜆
and outputs a poly(𝜆)-bit public parameter, 𝑝 ← Param(1𝜆)

• Enc is a randomized algorithm that takes as input a secret key 𝑥, a public 
parameter 𝑝, and a message 𝑚 ∈ 0,1 and outputs a ciphertext 
0,1 poly(𝜆), 𝑐 ← Enc(𝑥, 𝑝,𝑚)

• Dec is a deterministic algorithm that takes as input a secret key 𝑥, a public 
parameter 𝑝, and a ciphertext 𝑐, and outputs a decrypted message 𝑚′, 
𝑚′ ← Dec(𝑥, 𝑝, 𝑐). If 𝑐 = Enc(𝑥, 𝑝,𝑚), then 𝑚′ = 𝑚



Multi-Instance Leakage-Resilient Scheme

An MILR scheme (Gen, Param, Enc, Dec) is (Γ, 𝜏)-secure against space 
bounded pre-processing adversaries if both multi-semantic security 
and multi-security against bounded pre-processing adversary hold



Multi-Instance Leakage-Resilient Scheme

Let Ԧ𝑥 = (𝑥1, … , 𝑥𝑛) be a vector of keys, and Ԧ𝑝 = (𝑝1, … , 𝑝𝑛) be a 
vector of public parameters. Let 𝐽 ⊆ [𝑛] be a set of “hidden 
coordinates”. Define the two oracles:

1. 𝐸1( Ԧ𝑥, Ԧ𝑝, 𝐽,⋅,⋅) takes an index of a key 𝑗 ∈ [𝑛] and a message 𝑚, and 
returns Enc(𝑥𝑗 , 𝑝𝑗 , 𝑚)

2. 𝐸0( Ԧ𝑥, Ԧ𝑝, 𝐽,⋅,⋅) takes an index of a key 𝑗 ∈ [𝑛] and a message 𝑚. If
𝑗 ∈ 𝐽, output Enc(𝑥𝑗 , 𝑝𝑗 , 0). Otherwise if 𝑗 ∉ 𝐽, output 
Enc(𝑥𝑗 , 𝑝𝑗 , 𝑚)



Multi-Semantic Security

Given Γ: R → R, every 𝑛 = poly(Γ 𝜆 ) and every poly(Γ 𝜆 )-time 
adversary 𝐵, there exists negligible function negl

“A computationally bounded adversary that gets the public 
parameters but not the keys, cannot tell whether it is interacting with 
𝐸0 or with 𝐸1”

Pr
Ԧ𝑥, Ԧ𝑝,𝐵,Enc

𝐵𝐸0 Ԧ𝑥, Ԧ𝑝, 𝑛 ,⋅,⋅ Ԧ𝑝 = 1 − Pr
Ԧ𝑥, Ԧ𝑝,𝐵,Enc

𝐵𝐸0 Ԧ𝑥, Ԧ𝑝, 𝑛 ,⋅,⋅ Ԧ𝑝 = 1

≤ negl (Γ 𝜆 )



Multi-Security Against Bounded Pre-
Processing Adversary

Given Γ: R → R, every 𝑛 = poly Γ 𝜆 , pre-processing function 𝐹
that outputs 𝑧 ← 𝐹( Ԧ𝑥) with 𝑧 ≤ 𝑠, we can output a random 𝐽 ⊆ [𝑛]
with 𝐽 ≥ 𝑛 − 𝜏(𝜆, 𝑠) such that for every poly(Γ 𝜆 )-time adversary 
𝐵, there exists negligible function negl

“Even if 𝑠 bits of our 𝑛 keys are leaked then still encryptions w.r.t. the 
keys of 𝐽 are computationally indistinguishable”

Pr
Ԧ𝑥, Ԧ𝑝,𝐵,Enc,𝐽,𝑧

𝐵𝐸0 Ԧ𝑥, Ԧ𝑝,𝐽,⋅,⋅ 𝑧, Ԧ𝑝 = 1 − Pr
Ԧ𝑥, Ԧ𝑝,𝐵,Enc,𝐽,𝑧

𝐵𝐸0 Ԧ𝑥, Ԧ𝑝,𝐽,⋅,⋅ 𝑧, Ԧ𝑝 = 1

≤ negl (Γ 𝜆 )



Multi-Instance Leakage-Resilient Scheme

An MILR scheme (Gen, Param, Enc, Dec) is (Γ, 𝜏)-secure against space 
bounded pre-processing adversaries if both multi-semantic security 
and multi-security against bounded pre-processing adversary hold

Theorem: If there exists a Γ(𝜆)-secure encryption scheme against
non-uniform adversaries, then there exists an MILR scheme that is 
(Γ 𝜆 , 𝜏)-secure against space bounded non-uniform preprocessing 

adversaries for 𝜏 =
2𝑠

𝜆
+ 4



Multi-Instance Leakage-Resilient Scheme

Intuition: Any good 𝑠-space-bounded adversary against an MILR can 

be viewed as a convex combination of adversaries that store 𝑂
𝑠

𝜆
samples



Talk Structure

• Multi-instance leakage-resilient (MILR) scheme definition

• Differential privacy separation

• Space bounded adaptive data analysis

• Construction of MILR



Space Hardness for Differential Privacy

Toy problem: Output either the last element of the stream or 
a 1 + 𝛼 -approximation to 𝐹2

Non-private algorithm outputs the last element of the stream using 
𝑂 log 𝑛 space 

Private algorithm must output a 1 + 𝛼 -approximation to 𝐹2, which 

requires Ω
1

𝛼2
space [Woodruff04]



Space Hardness for Differential Privacy

Focus on the private and non-private algorithms computing “the 
same thing”

Consider algorithms that use a summary 𝑧 of a dataset 𝐷 ∈ 𝑋𝑛 to 
solve a problem 𝑃: 𝑋∗ × 𝑄 → 𝑀, where 𝑄 is a family of possible
queries, and 𝑀 is a metric space



(𝛼, 𝛽)-Accuracy

We say that 𝐴 = (𝐴1, 𝐴2) solves a problem 𝑃: 𝑋∗ × 𝑄 → 𝑀 with 
space complexity 𝑠, sample complexity 𝑛, error 𝛼, and confidence 𝛽 if

• 𝐴1: 𝑋
∗ → 0,1 𝑠 is a pre-processing procedure that takes a dataset 𝐷 and 

outputs an 𝑠 bit string

• For every input dataset 𝐷 ∈ 𝑋𝑛 and every query 𝑞 ∈ 𝑄 it holds that 

Pr
z←𝐴1(𝐷)
𝑎←𝐴2(𝑧,𝑞)

𝑎 − 𝑃 𝐷, 𝑞 ≤ 𝛼 ≤ 𝛽



Decrypted Average Vector (DAV)

Data set 𝐷 = 𝑥1, … , 𝑥𝑛 ∈ {0,1}𝜆
𝑛

of keys

Queries 𝑞 = ( 𝑝1, 𝑐1), … , (𝑝𝑛, 𝑐𝑛) , public parameters 𝑝𝑖, ciphertexts 
𝑐𝑖 an encryption of a binary vector of length 𝑑

Output Ԧ𝑎 = 𝑎1, … , 𝑎𝑑 ∈ 0,1 𝑑 to approximate (error in ℓ∞)

dav𝑞 𝐷 =
1

𝑛
෍

𝑖=1

𝑛

Dec(𝑥𝑖 , 𝑝𝑖 , 𝑐𝑖)



Decrypted Average Vector (DAV)

Theorem: There exists a non-private streaming algorithm for the DAV 

problem with ℓ∞ error 
1

10
that uses 𝑂(𝜆 log 𝑑) bits of space

Algorithm: Sample 𝑂(log 𝑑) of the input keys, then estimate dav𝑞
using the sampled keys for each query 𝑞



Decrypted Average Vector (DAV)

Theorem: There exists a (𝜀, 𝛿)-private streaming algorithm for the 

DAV problem with ℓ∞ error 
1

10
that uses 𝑂

1

𝜀
𝑑 log

1

𝛿
𝜆 log 𝑑 bits of 

space

Algorithm: Sample 𝑂
1

𝜀
𝑑 log

1

𝛿
log 𝑑 the input keys, then estimate 

dav𝑞 using the sampled keys for each query 𝑞 with advanced 
composition [DRV10]



Decrypted Average Vector (DAV)

Theorem: Any computationally-efficient differentially-private 

algorithm 𝐴 for solving the DAV problem with ℓ∞ error 
1

10
must use 

space ෩Ω 𝑑 (assuming the existence of a sub-exponentially secure 
symmetric-key encryption scheme)

Theorem: Let Π be an MILR scheme that is (Γ, 𝜏)-secure against space 
bounded non-uniform preprocessing adversaries. For every 
poly(Γ(𝜆))-time (𝜀, 𝛿)-CDP algorithm for the DAV problem, we have 

𝜏 = Ω
𝑑

log 𝑛



Computational Differential Privacy

Given 𝜀 > 0 and 𝛿 ∈ 0,1 , a randomized algorithm 𝐴:𝑈∗ → 𝑌 is 
(𝜀, 𝛿)-computationally differentially private if, for neighboring 
datasets 𝐷 and 𝐷′ chosen by a poly(𝜆)-time adversary (𝐵, 𝑇), there 
exists a negligible function negl such that 

Pr
𝐷0,𝐷1 ←𝑄

𝑇 𝐴 𝐷0 = 1 ≤ 𝑒𝜀 Pr
𝐷0,𝐷1 ←𝑄

𝑇 𝐴 𝐷1 = 1 + 𝛿 + negl(𝜆)



Fingerprinting Codes

Scheme for distributing codewords 𝑤1, … , 𝑤𝑛 to 𝑛 users that can be 
uniquely traced back to each user, even under collusions of up to 𝑘
users

Marking assumption asserts that the combined codeword must
agree with at least one of the “real” codewords in each position

[SU15] For every 𝑘 ∈ 𝑛 , there is a 𝑘-collusion-resilient 
fingerprinting code of length 𝑑 = 𝑂 𝑘2 log 𝑛 for 𝑛 users with failure 
probability 1 −

1

𝑛2
and an efficiently computable trace function



CDP Separation

Suppose 𝐴 = (𝐴1, 𝐴2) is a poly(Γ(𝜆))-time (𝜀, 𝛿)-CDP algorithm for 
the DAV problem 

Construct an adversary 𝐵 to fingerprinting code with Ω
𝑑

log 𝑛

colluding users



Adversary to FPC



Proof Outline

1. Show 𝐵 is computationally differentially private w.r.t. the 
collection of codewords (even though our assumption on 𝐴 is that 
it is private w.r.t. the keys)



Proof Outline

2. Leveraging the properties of the MILR scheme, show that 𝐵
effectively ignores most of its inputs, except for at most 𝜏
codewords, so 𝐵 is effectively an FPC adversary that operates on 
only 𝜏 codewords (rather than the 𝑛 codewords it obtains as 
input)





Proof Outline

3. A successful FPC adversary cannot be differentially private, 
because this would contradict the fact that the tracing algorithm 
is able to recover one of its input points [BUV14]. 

There exists coordinate exist a 

coordinate 𝑖∗ ≠ 0 that is output with 

probability at least 
1

2𝑛

FPC fails with probability at least 
1

2𝑛



Proof Outline

Our gain comes from the fact that 𝐵 only uses (effectively) 𝜏
codewords, and hence, in order to get a contradiction, it suffices to 
use an FPC with a much shorter codeword-length



Talk Structure

• Multi-instance leakage-resilient (MILR) scheme definition

• Differential privacy separation

• Space bounded adaptive data analysis
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Adaptive Data Analysis

• Given 𝑛 samples, there exists a computationally efficient oracle that 
accurately answers ෨𝑂 𝑛2 adaptive queries [DFH+15]

• There is no computationally efficient oracle that given 𝑛 samples is 
accurate on ෩Ω 𝑛2 adaptively chosen queries (assuming the existence 
of one-way functions) [SU15]



Our Results (Adaptive Data Analysis)

Theorem: Every computationally efficient mechanism that is 
(0.1, 0.1)-accurate for 𝑘 queries must have space complexity at least 
Ω( 𝑘), assuming the existence of one-way functions



Space Hardness for Adaptive Data Analysis

Theorem: If there exists a Γ(𝜆)-secure encryption scheme against 
non-uniform adversaries, then there exists a poly(Γ(𝜆))-time 
adversary 𝐵 such that:

1. Let  𝐴 = (𝐴1, 𝐴2) be a poly(Γ(𝜆))-time mechanism with space 
complexity 𝑠 ≤ 𝑂(𝜆 𝑘). Then

2. Furthermore, the underlying distribution defined by the adversary 𝐵 can 
be fully described using 𝑂 𝜆 𝑘 bits, is sampleable in poly(Γ(𝜆))- time, 
and elements sampled from this distribution can be represented using 
𝑂 𝜆 + log 𝑘 bits

Pr 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐺𝑎𝑚𝑒𝑆𝑝𝑎𝑐𝑒 𝐴, 𝐵, 𝑠, 𝑘 = 1 >
2

3



Proof Sketch

There exists an adversary 𝐵𝑠𝑎𝑚𝑝𝑙𝑒 that fails every efficient 
mechanism with sample complexity 𝑡 ≪ 𝑘 [SU15]

Use 𝐵𝑠𝑎𝑚𝑝𝑙𝑒 to build an adversary 𝐵𝑠𝑝𝑎𝑐𝑒 that fails every efficient 
mechanism with space 𝑠 ≪ 𝑘



Proof Sketch

𝐵𝑠𝑎𝑚𝑝𝑙𝑒 uses a uniform distribution over a small set of points of size 
𝑛 hidden to the curator 

𝐵𝑠𝑝𝑎𝑐𝑒 samples 𝑛 keys 𝑋 = 𝑥1, … , 𝑥𝑛 from the MILR scheme and 
uses a uniform distribution over 𝑋, given to 𝐴𝑠𝑝𝑎𝑐𝑒, who shrinks it 
into a sketch 𝑧 of size 𝑠 bits

For each query 𝑞 by 𝐵𝑠𝑎𝑚𝑝𝑙𝑒, define 𝑓𝑞 𝑥 = 𝑞 Dec 𝑥, 𝑝𝑗 , 𝑐𝑗



Proof Sketch

Would like to claim contradiction, but 𝐵𝑠𝑝𝑎𝑐𝑒 has access to all of 𝑋

Define ෠𝐵𝑠𝑝𝑎𝑐𝑒 that only gets to see indices in 𝑛 ∖ 𝐽, where 𝐽 has size
𝑛 − 𝜏 and is the set of keys uncompromised by 𝐴𝑠𝑝𝑎𝑐𝑒

By security of MILR, 𝐴𝑠𝑝𝑎𝑐𝑒 cannot distinguish between ෠𝐵𝑠𝑝𝑎𝑐𝑒 and 
𝐵𝑠𝑝𝑎𝑐𝑒, which leads to a contradiction for 𝜏 ≤ 𝑡



MILR Construction

Given an encryption scheme Π′ = (Gen′, Enc′, Dec′) and 𝜆 =
poly(𝜆′), contrast an MILR scheme as follows:

• Gen: On input 1𝜆, return 𝑥 ←𝑅 0, 1 𝜆

• Param: On input 1𝜆, generate a family 𝐺 of universal hash functions with 
domain 0, 1 𝜆 and range 0, 1 𝜆′

• Enc: On input (𝑥, 𝑝,𝑚), let 𝑥′ = 𝑔(𝑥) for 𝑔 described by 𝑝 and return 
Enc′(𝑥′, 𝑚)

• Dec: On input (𝑥, 𝑝, 𝑐), let 𝑥′ = 𝑔(𝑥) for 𝑔 described by 𝑝 and return 
Dec′(𝑥′, 𝑐)



𝑘-Bit Fixing Sources

An (𝑛, 2𝜆)-source is a random variable 𝑋 with range 0, 1 𝜆 𝑛
and is 

called 𝑘-bit fixing if is fixed on at most 𝑘 coordinates and uniform on 
the rest



Closeness to Convex Combination of 𝑘-Bit 
Fixing Sources

Let 𝐹: 0, 1 𝜆 𝑛
→ 0,1 𝑠 be an arbitrary function and 𝑋 =

𝑋1, … , 𝑋𝑛 ∼ 0, 1 𝜆 𝑛
and let 𝑍 = 𝐹 𝑋 . 

Let 𝐻 be a family of universal hash functions with domain 0,1 𝜆 and 
range 0,1 𝜆′ and let 𝐺 ∼ 𝐻𝑛.

There exists a family 𝑉𝐺,𝑍 of convex combinations of 𝑘-bit fixing 

𝑛, 20.1𝜆 -sources for 𝑘 =
2𝑠

𝜆
+ 4 with

Δ 𝐺, 𝑍, 𝐺 𝑋 , 𝐺, 𝑍, 𝑉𝐺,𝑍 ≤ 2−0.1𝜆



Closeness to Convex Combination of 𝑘-Bit 
Fixing Sources
“Even if we give the adversary a leakage 𝑧 ∈ 0,1 𝑠, hash functions Ԧ𝑔
and all the remaining keys, there is a subset of keys that is almost 
jointly uniformly distributed, i.e., the distribution of the hashed 
keys Ԧ𝑔(𝑋) is (close to) a convex combinations of 𝑘-bit-fixing sources”

Proof uses a variant of the leftover hash lemma



Multi-Security Against Bounded Pre-
Processing Adversary
For a fixed 𝑘-bit fixing source, the remaining hashed keys are 
uniformly distributed from the adversary’s view, security with respect 
to these keys follows from the semantic security of the underlying 
encryption scheme



Applications to Communication Complexity

Suppose ANY sampling based protocol for computing 𝑓(𝐴, 𝐵)
requires 𝑘 samples 𝑎1, 𝑏1 , … , 𝑎𝑘 , 𝑏𝑘 and 𝑎𝑖 ∈ 0,1 𝑡 for each 𝑖 ∈
[𝑘]



Applications to Communication Complexity

𝑎1 ∈ 0,1 𝑡

𝑎2 ∈ 0,1 𝑡

⋮

𝑎𝑘 ∈ 0,1 𝑡

𝑏1 ∈ 0,1 ∗

𝑏2 ∈ 0,1 ∗

⋮

𝑏𝑘 ∈ 0,1 ∗

If a sampling protocol requires 𝑘 = Ω(𝜂2𝑛) samples for success 

probability 
1

2
+

𝜂

2
, then any one-way protocol must use Ω(𝜂2𝑛𝑡)

communication for success probability 
1

2
+ 𝜂



Summary

• Introduce and construct multi-instance leakage resilience scheme

• For the decoded average vector problem, any CDP algorithm 
requires ෩Ω 𝑑 space in the streaming model, while there exists a 
non-private algorithm that uses 𝑂(𝜆 log 𝑑) space

• Every computationally efficient mechanism that is (0.1, 0.1)-
accurate for 𝑘 queries must have space complexity at least Ω( 𝑘), 
assuming the existence of one-way functions



Future Directions

Separations for differential privacy and adaptive data analysis without 
computational assumptions

Separation for differential privacy with a more “natural” problem

Additional applications of MILR
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