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Streaming Model

❖ Input: Elements of an underlying data set 𝑆, which arrives 
sequentially

❖ Output: Evaluation (or approximation) of a given function

❖ Goal: Use space sublinear in the size 𝑚 of the input 𝑆

❖ Given a set 𝑆 of 𝑚 elements from [𝑛], let 𝑓𝑘 be the frequency of 
element 𝑘 (how often it appears)

1 1 2 1 2 1 1 2 3  5, 3, 1, 0 ≔ 𝑓



Arbitrary-Order vs Random-Order Streams

❖ Arbitrary-order: Elements inducing 𝑓 arrive sequentially in an 
arbitrary order (worst-case)

❖ Random-order: Elements inducing 𝑓 arrive in a uniformly random 
order (average-case)

1 1 2 1 2 1 1 2 3  5, 3, 1, 0 ≔ 𝑓

2 3 1 1 1 2 2 1 1  5, 3, 1, 0 ≔ 𝑓



Frequency Moments

❖ Let 𝐹𝑝 be the 𝑝-th frequency moment of the vector 𝑓 ∈ 𝑍𝑛:

❖ Goal: Given a set 𝑆 of 𝑚 elements from [𝑛] and an accuracy 
parameter 𝜀, output a (1 + 𝜀)-approximation to 𝐹𝑝

❖Motivation: Entropy estimation, network anomaly detection,…

𝐹𝑝 = 𝑓1
𝑝
+ 𝑓2

𝑝
+⋯+ 𝑓𝑛

𝑝



Constant-Factor Approximation

❖ Space 𝑂 log 𝑛 algorithm for 𝐹𝑝 with 𝑝 ∈ 0, 2
[BlasiokDingNelson17, BravermanViolaWoodruffYang18]

❖ Space ෩Ω 𝑛1−2/𝑝 necessary for 𝐹𝑝 with 𝑝 > 2 [Ganguly12] on 
arbitrary-order streams, Ω 𝑛1−2.5/𝑝 for random-order streams 
[ChakrabartiCormodeMcGregor16]



1 + 𝜀 -Approximation for 𝐹𝑝 with 𝑝 > 2

❖ Space ෨𝑂
1

𝜀2
𝑛1−2/𝑝 algorithm [Ganguly11, GangulyWoodruff18]

❖ Space Ω
1

𝜀2
𝑛1−2/𝑝

log 𝑛
necessary for arbitrary-order streams 

[Ganguly12], Ω 𝑛1−2.5/𝑝 +
1

𝜀2
for random-order streams 

[ChakrabartiCormodeMcGregor16]



Our Results: 𝐹𝑝 Moment Estimation, 𝑝 > 2

❖ Space ෨𝑂
1

𝜀4/𝑝
𝑛1−2/𝑝 algorithm for random-order insertion-only 

streams

❖ Space ෨𝑂
1

𝜀4/𝑝
𝑛1−2/𝑝 algorithm for two-pass streams in arbitrary-

order, even with turnstile updates

❖ Space Ω
1

𝜀2
𝑛1−2/𝑝 necessary for one-pass arbitrary-order streams

❖ Results show separation between one-pass arbitrary-order and one-
pass random-order, multi-pass arbitrary order



Level Sets

❖ Partition the coordinates 𝑘 ∈ 𝑛 into level sets Λ𝑖 based on the 
frequencies of each item, so that 𝑘 ∈ Λ𝑖 if

❖ Define contribution 𝐶𝑖 of level set Λ𝑖 as the total contribution of all 
coordinates in Λ𝑖 to 𝐹𝑝

𝑓𝑘
𝑝
∈

𝐹𝑝

2𝑖
,
2𝐹𝑝

2𝑖

𝐶𝑖 = ෍

𝑘∈Λ𝑖

𝑓𝑘
𝑝



Level Sets

❖ Intuition: Level sets Λ𝑖 decompose 𝐹𝑝

❖ To obtain a 1 + 𝜀 -approximation to 𝐹𝑝, it suffices to obtain a 
1 + 𝜀 -approximation ෡𝐶𝑖 to the contribution 𝐶𝑖 of each level set Λ𝑖

with 𝐶𝑖 ≥ 𝜀𝐹𝑝

𝐹𝑝 = ෍

𝑘∈[𝑛]

𝑓𝑘
𝑝
=෍

𝑖

෍

𝑘∈Λ𝑖

𝑓𝑘
𝑝
=෍

𝑖

𝐶𝑖



Heavy-Hitters

❖Let 𝐿𝑝 be the norm of the frequency vector:

❖ Goal: Given a set 𝑆 of 𝑚 elements from [𝑛] and a threshold 𝜀, 
output the elements 𝑘 such that 𝑓𝑘 > 𝜀 𝐿𝑝 and their approximate 
frequencies ෡𝑓𝑘
❖Motivation: DDoS prevention, iceberg queries, moment estimation

𝐿𝑝 = 𝑓1
𝑝
+ 𝑓2

𝑝
+⋯+ 𝑓𝑛

𝑝 1/𝑝



Heavy-Hitters to Level Set Contributions

❖ If 𝑓𝑘
𝑝
> 𝜀2𝐹𝑝, then 𝑘 is an 𝐿2 heavy-hitter with threshold 

𝜀2/𝑝

𝑛1/2−1/𝑝

❖ 𝑓𝑘
𝑝
> 𝜀2𝐹𝑝 implies 𝑓𝑘 > 𝜀2/𝑝𝐿𝑝 so 𝑓𝑘

2 > 𝜀4/𝑝𝐿𝑝
2 >

𝜀4/𝑝

𝑛1−2/𝑝
𝐹2

❖ Use an 𝐿2 heavy-hitter algorithm with threshold 
𝜀2/𝑝

𝑛1/2−1/𝑝
to find 𝑘

and obtain a 1 + 𝜀 approximate frequency ෡𝑓𝑘



Level Sets with Large Frequencies

❖ Recall: To obtain a 1 + 𝜀 -approximation to 𝐹𝑝, it suffices to 
obtain a 1 + 𝜀 -approximation ෡𝐶𝑖 to the contribution 𝐶𝑖 of each 
level set Λ𝑖 with 𝐶𝑖 ≥ 𝜀𝐹𝑝

❖ If 𝑓𝑘
𝑝
> 𝜀2𝐹𝑝, then an 𝐿2 heavy-hitter algorithm with threshold 

𝜀2/𝑝

𝑛1/2−1/𝑝
can find 𝑘 and obtain a 1 + 𝜀 approximate frequency ෡𝑓𝑘

❖ In summary, we obtain a 1 + 𝜀 -approximation ෡𝐶𝑖 to the 

contribution 𝐶𝑖 of each level set Λ𝑖 with 𝑖 < log
1

𝜀2



Idealized Algorithm

1. Form 𝑂 log 𝑛 streams 𝑆0, 𝑆1, 𝑆2, 𝑆3, … by subsampling the 

universe [𝑛] at rate 
1

2𝑗
for 𝑗 = 0,1,2,3, …

2. Use 𝐿2 heavy-hitter algorithms with threshold 
𝜀2/𝑝

𝑛1/2−1/𝑝
on the 

substreams 𝑆0, 𝑆1, 𝑆2, 𝑆3, … and find 1 + 𝜀 -approximate 
frequencies ෡𝑓𝑘 to each reported heavy-hitter 𝑘 ∈ [𝑛]

3. Use the approximate frequencies ෡𝑓𝑘 to compute approximate 
contributions ෡𝐶𝑖 to 𝐶𝑖

4. Output σ𝑖
෡𝐶𝑖



Space Complexity / Source of the Separation
❖ Space determined by 𝐿2 heavy-hitter algorithms with threshold 

𝜀2/𝑝

𝑛1/2−1/𝑝
on the substreams 𝑆0, 𝑆1, 𝑆2, 𝑆3, … to find 1 + 𝜀 -

approximate frequencies ෡𝑓𝑘 to each reported heavy-hitter 𝑘 ∈ [𝑛]

❖ Can black-box heavy-hitter algorithms for one-pass random-order 
streams [BravermanGargWoodruff20]

❖ Similar results are NOT known for one-pass arbitrary-order 
streams



𝐹𝑝 Moment Estimation, 𝑝 > 2

❖ Space ෨𝑂
1

𝜀4/𝑝
𝑛1−2/𝑝 algorithm for random-order streams

❖ Space ෨𝑂
1

𝜀4/𝑝
𝑛1−2/𝑝 algorithm for two-pass streams in arbitrary-

order, even with turnstile updates

❖ Space Ω
1

𝜀2
𝑛1−2/𝑝 necessary for one-pass arbitrary-order streams

❖ Results show separation between one-pass arbitrary-order and one-
pass random-order, multi-pass arbitrary order



Level Sets with Small Frequencies

❖ Remains to approximate the contribution 𝐶𝑖 of each level set Λ𝑖
with 𝑖 ≥ log

1

𝜀2
and 𝐶𝑖 ≥ 𝜀𝐹𝑝

❖ Suppose 𝐶𝑖 = 𝐹𝑝 for some 𝑖 ≥ 𝑇, where 𝑇 = log
1

𝜀2

❖ Since 𝑓𝑘
𝑝
∈

𝐹𝑝

2𝑖
,
2𝐹𝑝

2𝑖
for each 𝑘 ∈ Λ𝑖, then Λ𝑖 ≥ 2𝑖−1



Level Sets with Small Frequencies

❖ If we sample the universe [𝑛] at a rate 
1

2𝑖−𝑇
, then 

Λ𝑖

2𝑖−𝑇
≈

1

𝜀2

elements of Λ𝑖 will be sampled

❖ Intuition: Use their approximate frequencies to estimate 𝐶𝑖

❖ Standard variance argument shows rescaling the sampled 
contribution by 2𝑖−𝑇 gives a 1 + 𝜀 -approximation ෡𝐶𝑖 to 𝐶𝑖, if we 

sample 
1

𝜀2
elements of Λ𝑖



Level Sets with Small Frequencies

❖ How to compute approximate frequencies?

❖ If we sample the universe [𝑛] at a rate 
1

2𝑖−𝑇
, the frequency moment 

𝑈𝑝
(𝑖)

of the subsampled stream will be 
𝐹𝑝

2𝑖−𝑇
in expectation

❖We have 𝑓𝑘
𝑝
∈

𝐹𝑝

2𝑖
,
2𝐹𝑝

2𝑖
, so 𝑓𝑘

𝑝
≥

1

2𝑇
𝑈𝑝
(𝑖)

with 
1

2𝑇
= 𝜀2

❖ In summary, we expect 𝑘 to be a heavy-hitter with respect to 𝑈𝑝
(𝑖)

❖ Use an 𝐿2 heavy-hitter algorithm with threshold 
𝜀2/𝑝

𝑛1/2−1/𝑝
w.r.t. 𝑈𝑝

(𝑖)

to find 𝑘 and obtain an approximate frequency ෡𝑓𝑘



Level Sets with Small Frequencies

❖ If 𝐶𝑖 = 𝐹𝑝 for some 𝑖 ≥ 𝑇 and 𝑓𝑘
𝑝
∈

𝐹𝑝

2𝑖
,
2𝐹𝑝

2𝑖
then an 𝐿2 heavy-

hitter algorithm on a substream that samples 𝑘 with rate 
1

2𝑖−𝑇
and 

threshold 
𝜀2/𝑝

𝑛1/2−1/𝑝
can obtain an approximate frequency ෡𝑓𝑘

❖ If ෡𝑓𝑘 is a 1 + 𝜀 -approximation to 𝑓𝑘 for all such 𝑘, then we can 
rescale and obtain a 1 + 𝑂(𝜀) -approximation ෡𝐶𝑖 to 𝐶𝑖



Level Sets with Small Frequencies

❖ Recall: To obtain a 1 + 𝜀 -approximation to 𝐹𝑝, it suffices to 
obtain a 1 + 𝜀 -approximation ෡𝐶𝑖 to the contribution 𝐶𝑖 of each 
level set Λ𝑖 with 𝐶𝑖 ≥ 𝜀𝐹𝑝

❖ Previous argument shows 1 + 𝜀 -approximation ෡𝐶𝑖 to the 
contribution 𝐶𝑖 if 𝐶𝑖 = 𝐹𝑝

❖ Same argument will work if 𝐶𝑖 = 𝛾𝑖𝐹𝑝 for some 𝛾𝑖 ∈ [𝜀, 1], since 
we get 1 + 𝜀/𝛾𝑖 -approximation ෡𝐶𝑖 to the contribution 𝐶𝑖, which 
gives at most 𝜀𝐹𝑝 additive error to 𝐶𝑖



Lower Bound

❖ Space Ω
1

𝜀2
𝑛1−2/𝑝 necessary for one-pass arbitrary-order streams

❖ We define the 𝑡, 𝜀, 𝑛 -player set disjointness estimation problem 
𝑡, 𝜀, 𝑛 − 𝐷𝑖𝑠𝑗𝐼𝑛𝑓𝑡𝑦 and show it has total communication cost 

Ω
𝑛

𝑡

❖ Set 𝑡 = Θ
1

𝜀
𝑛1/𝑝 and show a reduction from 1 + 𝜀 -

approximation of 𝐹𝑝 to 𝑡, 𝜀, 𝑛 − 𝐷𝑖𝑠𝑗𝐼𝑛𝑓𝑡𝑦



Lower Bound

❖ Space Ω
1

𝜀2
𝑛1−2/𝑝 necessary for one-pass arbitrary-order streams

❖ We define the 𝑡, 𝜀, 𝑛 -player set disjointness estimation problem 
𝑡, 𝜀, 𝑛 − 𝐷𝑖𝑠𝑗𝐼𝑛𝑓𝑡𝑦 and show it has total communication cost 

Ω
𝑛

𝑡

❖ Set 𝑡 = Θ
1

𝜀
𝑛1/𝑝 and show a reduction from 1 + 𝜀 -

approximation of 𝐹𝑝 to 𝑡, 𝜀, 𝑛 − 𝐷𝑖𝑠𝑗𝐼𝑛𝑓𝑡𝑦



𝑡, 𝜀, 𝑛 -Player Set Disjointness Estimation

❖ There are 𝑡 + 1 players 𝑃1, 𝑃2, … , 𝑃𝑡+1. For each 𝑠 ∈ [𝑡], 𝑃𝑠
receives a vector 𝑣𝑠 ∈ 0,1 𝑛. Player 𝑃𝑡+1 receives a “spike location” 
𝑗 ∈ [𝑛] and a bit 𝑐 ∈ {0,1}. 

❖ Let 𝑢 = σ𝑠 𝑣𝑠. The promise is that:
❖ 𝑢𝑖 ≤ 1 for each 𝑖 ≠ 𝑗 (player sets are disjoint outside of coordinate 𝑗)

❖ either 𝑢𝑗 ≤ 1 or 𝑢𝑗 = 𝑡 (either player sets are disjoint at coordinate 𝑗 or all 
players have 𝑗 in their sets)

❖ Player 𝑃𝑡+1 must differentiate between the three cases:

❖ (1) 𝑢𝑗 +
𝑐𝑡

𝜀
≤ 𝑡, (2) 𝑢𝑗 +

𝑐𝑡

𝜀
∈

𝑡

𝜀
,
𝑡

𝜀
+ 1 , (3) 𝑢𝑗 +

𝑐𝑡

𝜀
= 1 + 𝜀

𝑡

𝜀



𝑡, 𝜀, 𝑛 -Player Set Disjointness Estimation

❖ Intuition: Since 𝑃1, 𝑃2, … , 𝑃𝑡 do not know the spike location 𝑗 ∈
[𝑛], they must solve the problem on all coordinates

❖ Solving multi-party set disjointness on a single coordinate is 
roughly solving the AND problem of 𝑡 bits

❖ Hellinger distance argument shows the information complexity of 

AND is Ω
1

𝑡
[Jayram09]

❖ Use direct sum embedding to show 𝑡, 𝜀, 𝑛 − 𝐷𝑖𝑠𝑗𝐼𝑛𝑓𝑡𝑦 has total 

communication cost Ω
𝑛

𝑡



Reduction

❖ Recall that for each 𝑠 ∈ [𝑡], 𝑃𝑠 receives a vector 𝑣𝑠 ∈ 0,1 𝑛. Player 
𝑃𝑡+1 receives a “spike location” 𝑗 ∈ [𝑛] and a bit 𝑐 ∈ {0,1}. 

❖ For each 𝑠 ∈ [𝑡], 𝑃𝑠 inserts the coordinates of vector 𝑣𝑠 into the 
stream

❖ 𝑃𝑡+1 adds the vector 
𝑐𝑡

𝜀
𝑒𝑗, where 𝑒𝑗 is the elementary vector 

corresponding to the spike location

❖ Intuition: Mass added to spike location provides 𝐹𝑝 separation 



Reduction

❖ Recall that for each 𝑠 ∈ [𝑡], 𝑃𝑠 receives a vector 𝑣𝑠 ∈ 0,1 𝑛. Player 
𝑃𝑡+1 receives a “spike location” 𝑗 ∈ [𝑛] and a bit 𝑐 ∈ {0,1}. 

❖ Let 𝑢 = σ𝑠 𝑣𝑠 and 𝑡 = Θ
1

𝜀
𝑛1/𝑝

❖ If 𝑐 = 0, then 𝑥 𝑝
𝑝
≤ 𝑛 +

𝐶𝑝

𝜀𝑝
𝑛 for some constant 𝐶 > 0

❖ If 𝑐 = 1 and 𝑢𝑗 = 1, then 
𝐶𝑝

𝜀2𝑝
𝑛 ≤ 𝑥 𝑝

𝑝
≤ 𝑛 + 𝑝 +

𝑝𝐶𝑝

𝜀2𝑝
𝑛

❖ If 𝑐 = 1 and 𝑢𝑗 = 𝑡, then 𝑥 𝑝
𝑝
≥ 1 +

1

𝜀

𝑝 𝑝𝐶𝑝

𝜀2𝑝
𝑛



Lower Bound

❖ 1 + 𝜀 -approximation of 𝐹𝑝 separates these three cases and thus 

solves 𝑡, 𝜀, 𝑛 − 𝐷𝑖𝑠𝑗𝐼𝑛𝑓𝑡𝑦 for 𝑡 = Θ
1

𝜀
𝑛1/𝑝

❖ 1 + 𝜀 -approximation of 𝐹𝑝 requires Ω
1

𝜀2
𝑛1−2/𝑝 space


