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Streaming Model

** Input: Elements of an underlying data set S, which arrives
sequentially

¢ Output: Evaluation (or approximation) of a given function
** Goal: Use space sublinear in the size m of the input S

¢ Given a set S of m elements from [n], let f;, be the frequency of
element k (how often it appears)

112121123-15,3,1,0] == f



Arbitrary-Order vs Random-Order Streams

¢ Arbitrary-order: Elements inducing f arrive sequentially in an
arbitrary order (worst-case)

¢ Random-order: Elements inducing f arrive in a uniformly random
order (average-case)

112121123—[5,3,1,0] := f
231112211—15,3,1,0] == f



Freqguency Moments

* Let F, be the p-th frequency moment of the vector f € Z™:
_ P p p
Fp—f1 t+f tt i

¢ Goal: Given a set S of m elements from [n] and an accuracy
parameter ¢, output a (1 + £)-approximation to F,

s Motivation: Entropy estimation, network anomaly detection,...



Constant-Factor Approximation

¢ Space O(logn) algorithm for F, with p € (0, 2}
[BlasiokDingNelson17, BravermanViolaWoodruffYang18]

% Space ((n'~2/?) necessary for F, with p > 2 [Ganguly12] on

arbitrary-order streams, Q(nl_z's/p) for random-order streams
[ChakrabartiCormodeMcGregor16]



(1 + &)-Approximation for E, withp > 2

% Space 0 (Eiz nl_z/p) algorithm [Ganguly11, GangulyWoodruff18]

1 nl_z/p

¢ Space () ( ) necessary for arbitrary-order streams

g% logn
[Ganguly12], Q) (nl—Z.S/p + glz) for random-order streams
[ChakrabartiCormodeMcGregorl6]



Our Results: F, Moment Estimation, p > 2

Space O (
streams

Space O (34/19 1= 2/7’) algorithm for two-pass streams in arbitrary-
order, even with turnstile updates

—2/p L nt- 2/19) algorithm for random-order insertion-only

1 4_ .
Space () (8—2 nt 2/p) necessary for one-pass arbitrary-order streams

Results show separation between one-pass arbitrary-order and one-
pass random-order, multi-pass arbitrary order



Level Sets

** Partition the coordinates k € |n] into level sets A; based on the
frequencies of each item, so that k € A; if

F, 2F,
21" 2

p
Jr €

*» Define contribution C; of level set /A; as the total contribution of all
coordinates in AA; to F,

Ci = szp

kEAi



Level Sets

* Intuition: Level sets /A; decompose F,

DED PN

I Kk€eA;

¢ To obtain a (1 + &)-approximation to E,, it suffices to obtain a

(1 + €)-approximation C; to the contribution C; of each level set A;
with Ci = EFp



Heavy-Hitters

“*Let L, be the norm of the frequency vector:

Ly = (57 + 17+ + £7)

¢ Goal: Given a set S of m elements from [n] and a threshold ¢,
output the elements k such that f;, > ¢ L,, and their approximate

frequencies [},
s Motivation: DDoS prevention, iceberg queries, moment estimation

1/p



Heavy-Hitters to Level Set Contributions

2/p
¢ p 2 . . .
“Iff > &“F,, then kis an L, heavy-hitter with threshold ———-
. . 4/p
“* fi, > e%F, implies fi > e?/PL, so fi¢ > e*/PL2 > ni-Z/P F,
2/p
- to find k

¢ Use an L, heavy-hitter algorithm with threshfld 1/2=1/p

and obtain a (1 + &) approximate frequency f;



Level Sets with Large Frequencies

¢ Recall: To obtain a (1 + &)-approximation to E,, it suffices to
obtain a (1 + &)-approximation C; to the contribution C; of each
level set A; with C; = ¢F,

X Ifzjj,%9 > esz, then an L, heavy-hitter algorithm with threshold
&
nl/2-1/p

can find k and obtain a (1 + €) approximate frequency ﬁ

< In summary, we obtain a (1 + ¢)-approximation C; to the
L L 1
contribution C; of each level set A; with i < logg—2



|dealized Algorithm

1. Form O(logn) streams S, S, S5, S3, ... by subsampling the
. 1 .
universe [n| at rate zfor] =0,1,2,3, ...

2/p

2. Use L, heavy-hitter algorithms with threshold - on the

nl/2—-1/p

substreams S, S1, 55, 53, ... and find (1 + €)-approximate
frequencies f;, to each reported heavy-hitter k € [n]

3. Use the approximate frequencies ﬁ to compute approximate
contributions C; to (;

4. Output ), C;



Space Complexity / Source of the Separation

¢ Space determined by L, heavy-hitter algorithms with threshold
2/p
- on the substreams S, 51, S,, 53, ... to find (1 + &)-

nl/2-1/p R
approximate frequencies f; to each reported heavy-hitter k € |n]

+** Can black-box heavy-hitter algorithms for one-pass random-order
streams [BravermanGargWoodruff20]

¢ Similar results are NOT known for one-pass arbitrary-order
streams
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34/P
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*» Space O (34/19 1= 2/19) algorithm for two-pass streams in arbitrary-
order, even with turnstile updates

1 4_ :
** Space () (8—2 n! 2/p) necessary for one-pass arbitrary-order streams

** Results show separation between one-pass arbitrary-order and one-
pass random-order, multi-pass arbitrary order



Level Sets with Small Frequencies

¢ Remains to approximate the contribution C; of each level set A;
L 1
with i > logg—2 and C; = ¢k,

.:. Suppose C — F for some l > T Where T — Oggiz

“ Since f;| € [Fp ZFp] for each k € A;, then |A;| = 2t71



Level Sets with Small Frequencies

IAI 1

82

** If we sample the universe [n] at a rate ——,
elements of A; will be sampled

¢ Intuition: Use their approximate frequencies to estimate C;

¢ Standard variance argument shows rescaling the sampled

contribution by 2:7T gives a (1 + €)-approximation C; to C;, if we
1

sample = elements of A;



Level Sets with Small Frequencies

** How to compute approximate frequencies?

o . 1
% If we sample the universe [n] at a rate ——, the frequency moment

p
Zi—T

Ulgi) of the subsampled stream will be in expectation

Fp 2Fp

p 1,0 ., 1 _ 2
2i,zl.],sofk 22—TUp W|th2—T—g

“* We have fkp € [

*** In summary, we expect k to be a heavy-hitter with respect to Uzgl)
2/p

nl/2-1/p

** Use an L, heavy-hitter algorithm with threshold w.r.t. Ué”

A

to find k and obtain an approximate frequency f;



Level Sets with Small Frequencies

“IfC; = F, forsomei =T and f, € [Fp ZFp] then an L, heavy-

1
hitter algorithm on a substream that samples k with rat T

2/p
threshold

&E

can obtain an approximate frequency fk

“ If f. isa (1 + £)-approximation to f; for all such k, then we can
rescale and obtain a (1 + O(&))-approximation C; to C;



Level Sets with Small Frequencies

¢ Recall: To obtain a (1 + &)-approximation to E,, it suffices to
obtain a (1 + &)-approximation C; to the contribution C; of each
level set A; with C; = ¢F,

% Previous argument shows (1 + €)-approximation C; to the
contribution C; if C; = E,

* Same argument will work if C; = y; E, for some y; € [¢, 1], since
we get (1 + £/y;)-approximation C; to the contribution C;, which
gives at most £F, additive error to (;



Lower Bound

1 q_ .
¢ Space () (3_2 n! 2/p) necessary for one-pass arbitrary-order streams

¢ We define the (t, €, n)-player set disjointness estimation problem
(t,e,n) — DisjInfty and show it has total communication cost

2(;)

o Sett =0 (lnl/p) and show a reduction from (1 + &)-

&E

approximation of F, to (t,&,n) — DisjInfty
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(t, &, n)-Player Set Disjointness Estimation

¢ Therearet + 1 players P;, P, ..., P, 4. Foreach s € [t], P,
receives a vector v, € {0,1}". Player P, receives a “spike location’
J € |n] and a bitc € {0,1}.

“ Let u = ), v.. The promise is that:

“* u; < 1foreachi # j (player sets are disjoint outside of coordinate j)

* either u; < 1 oru; = t (either player sets are disjoint at coordinate j or all
players have j in their sets)

¢ Player P;,; must differentiate between the three cases:
. ct ct _(t t ct t
My +—=t(2u+_€ {;,;+ 1}, Bluj+—=>0+¢e)-

4



(t, &, n)-Player Set Disjointness Estimation

¢ Intuition: Since Py, P,, ..., P; do not know the spike location j €
In], they must solve the problem on all coordinates

*»* Solving multi-party set disjointness on a single coordinate is
roughly solving the AND problem of t bits

¢ Hellinger distance argument shows the information complexity of
AND is () (%) [JayramQ9]

% Use direct sum embedding to show (t, e,n) — DisjInfty has total
communication cost () (%)



Reduction

* Recall that for each s € [t], P, receives a vector v, € {0,1}". Player
P; 1 receives a “spike location” j € |[n] and a bit ¢ € {0,1}.

¢ For each s € [t], P; inserts the coordinates of vector v, into the
stream

t .
¢ P, , adds the vector % ej, where e; is the elementary vector
corresponding to the spike location

* Intuition: Mass added to spike location provides F, separation



Reduction

* Recall that for each s € [t], P, receives a vector v, € {0,1}". Player
P; 1 receives a “spike location” j € |[n] and a bit ¢ € {0,1}.

letu=).v.,andt =0 (lnl/p)

&

cP
$1fc =0, then ||x]|2 < n+ - N for some constant C > 0

cP D
7 — —_— _ —
“Ifc =1andu; =1, then —p NS lx]l, <=n+p+ —p N

. 1\P pcP
 Ifc =1andu; =t, then |x||2 > (1 +E) L)

g2p



Lower Bound

¢ (1 + &)-approximation of F, separates these three cases and thus
solves (t,&,n) — DisjInfty fort = © (lnl/p)

E

* (1 + &)-approximation of F, requires () (giz nl‘z/p) space



