Separations for Estimating Large Frequency Moments on Data Streams

David P. Woodruff Samson Zhou

Carnegie Mellon University

Streaming Model

- Arr Input: Elements of an underlying data set S, which arrives sequentially
- Output: Evaluation (or approximation) of a given function
- \bullet Goal: Use space *sublinear* in the size m of the input S
- \clubsuit Given a set S of m elements from [n], let f_k be the frequency of element k (how often it appears)

$$112121123 \rightarrow [5,3,1,0] := f$$

Arbitrary-Order vs Random-Order Streams

❖ Arbitrary-order: Elements inducing f arrive sequentially in an arbitrary order (worst-case)

❖ Random-order: Elements inducing f arrive in a uniformly random order (average-case)

$$1 \ 1 \ 2 \ 1 \ 2 \ 1 \ 1 \ 2 \ 3 \rightarrow [5, 3, 1, 0] := f$$
 $2 \ 3 \ 1 \ 1 \ 1 \ 2 \ 2 \ 1 \ 1 \rightarrow [5, 3, 1, 0] := f$

Frequency Moments

 \clubsuit Let F_p be the p-th frequency moment of the vector $f \in \mathbb{Z}^n$:

$$F_p = f_1^p + f_2^p + \dots + f_n^p$$

- \clubsuit Goal: Given a set S of m elements from [n] and an accuracy parameter ε , output a $(1 + \varepsilon)$ -approximation to F_p
- ❖ Motivation: Entropy estimation, network anomaly detection,...

Constant-Factor Approximation

- Space $O(\log n)$ algorithm for F_p with $p \in (0, 2]$ [BlasiokDingNelson17, BravermanViolaWoodruffYang18]
- Space $\widetilde{\Omega}(n^{1-2/p})$ necessary for F_p with p>2 [Ganguly12] on arbitrary-order streams, $\Omega(n^{1-2.5/p})$ for random-order streams [ChakrabartiCormodeMcGregor16]

$(1+\varepsilon)$ -Approximation for F_p with p>2

- riangle Space $\tilde{O}\left(\frac{1}{\varepsilon^2}n^{1-2/p}\right)$ algorithm [Ganguly11, GangulyWoodruff18]
- Space $\Omega\left(\frac{1}{\varepsilon^2}\frac{n^{1-2/p}}{\log n}\right)$ necessary for arbitrary-order streams [Ganguly12], $\Omega\left(n^{1-2.5/p}+\frac{1}{\varepsilon^2}\right)$ for random-order streams [ChakrabartiCormodeMcGregor16]

Our Results: F_p Moment Estimation, p>2

- Space $\tilde{O}\left(\frac{1}{\varepsilon^{4/p}}n^{1-2/p}\right)$ algorithm for random-order insertion-only streams
- Space $\tilde{O}\left(\frac{1}{\varepsilon^{4/p}}n^{1-2/p}\right)$ algorithm for two-pass streams in arbitrary-order, even with turnstile updates

- \Leftrightarrow Space $\Omega\left(\frac{1}{\varepsilon^2}n^{1-2/p}\right)$ necessary for one-pass arbitrary-order streams
- Results show separation between one-pass arbitrary-order and one-pass random-order, multi-pass arbitrary order

Level Sets

 \clubsuit Partition the coordinates $k \in [n]$ into level sets Λ_i based on the frequencies of each item, so that $k \in \Lambda_i$ if

$$f_k^p \in \left[\frac{F_p}{2^i}, \frac{2F_p}{2^i}\right]$$

ightharpoonup
igh

$$C_i = \sum_{k \in \Lambda_i} f_k^p$$

Level Sets

 \clubsuit Intuition: Level sets Λ_i decompose F_p

$$F_p = \sum_{k \in [n]} f_k^p = \sum_i \sum_{k \in \Lambda_i} f_k^p = \sum_i C_i$$

 \clubsuit To obtain a $(1 + \varepsilon)$ -approximation to F_p , it suffices to obtain a $(1 + \varepsilon)$ -approximation $\widehat{C_i}$ to the contribution C_i of each level set Λ_i with $C_i \geq \varepsilon F_p$

Heavy-Hitters

 \clubsuit Let L_p be the norm of the frequency vector:

$$L_p = (f_1^p + f_2^p + \dots + f_n^p)^{1/p}$$

- \clubsuit Goal: Given a set S of m elements from [n] and a threshold ε , output the elements k such that $f_k > \varepsilon L_p$ and their approximate frequencies $\widehat{f_k}$
- Motivation: DDoS prevention, iceberg queries, moment estimation

Heavy-Hitters to Level Set Contributions

 \clubsuit Use an L_2 heavy-hitter algorithm with threshold $\frac{\varepsilon^{2/p}}{n^{1/2-1/p}}$ to find k and obtain a $(1+\varepsilon)$ approximate frequency $\widehat{f_k}$

Level Sets with Large Frequencies

- Recall: To obtain a $(1 + \varepsilon)$ -approximation to F_p , it suffices to obtain a $(1 + \varepsilon)$ -approximation $\widehat{C_i}$ to the contribution C_i of each level set Λ_i with $C_i \geq \varepsilon F_p$

 \clubsuit In summary, we obtain a $(1 + \varepsilon)$ -approximation $\widehat{C_i}$ to the contribution C_i of each level set Λ_i with $i < \log \frac{1}{\varepsilon^2}$

Idealized Algorithm

- 1. Form $O(\log n)$ streams $S_0, S_1, S_2, S_3, ...$ by subsampling the universe [n] at rate $\frac{1}{2^j}$ for j=0,1,2,3,...
- 2. Use L_2 heavy-hitter algorithms with threshold $\frac{\varepsilon^{2/p}}{n^{1/2-1/p}}$ on the substreams $S_0, S_1, S_2, S_3, \ldots$ and find $(1 + \varepsilon)$ -approximate frequencies $\widehat{f_k}$ to each reported heavy-hitter $k \in [n]$
- 3. Use the approximate frequencies $\widehat{f_k}$ to compute approximate contributions $\widehat{C_i}$ to C_i
- 4. Output $\sum_{i} \widehat{C}_{i}$

Space Complexity / Source of the Separation

- ❖ Space determined by L_2 heavy-hitter algorithms with threshold $\frac{\varepsilon^{2/p}}{n^{1/2-1/p}}$ on the substreams $S_0, S_1, S_2, S_3, ...$ to find $(1 + \varepsilon)$ -approximate frequencies $\widehat{f_k}$ to each reported heavy-hitter $k \in [n]$
- Can black-box heavy-hitter algorithms for one-pass random-order streams [BravermanGargWoodruff20]

Similar results are NOT known for one-pass arbitrary-order streams

F_p Moment Estimation, p > 2

- Space $\tilde{O}\left(\frac{1}{\varepsilon^{4/p}}n^{1-2/p}\right)$ algorithm for random-order streams
- Space $\tilde{O}\left(\frac{1}{\varepsilon^{4/p}}n^{1-2/p}\right)$ algorithm for two-pass streams in arbitrary-order, even with turnstile updates
- \Leftrightarrow Space $\Omega\left(\frac{1}{\varepsilon^2}n^{1-2/p}\right)$ necessary for one-pass arbitrary-order streams
- Results show separation between one-pass arbitrary-order and one-pass random-order, multi-pass arbitrary order

- Remains to approximate the contribution C_i of each level set Λ_i with $i \geq \log \frac{1}{\varepsilon^2}$ and $C_i \geq \varepsilon F_p$
- \clubsuit Suppose $C_i = F_p$ for some $i \ge T$, where $T = \log \frac{1}{\varepsilon^2}$
- \clubsuit Since $f_k^p \in \left[\frac{F_p}{2^i}, \frac{2F_p}{2^i}\right]$ for each $k \in \Lambda_i$, then $|\Lambda_i| \ge 2^{i-1}$

- ❖ If we sample the universe [n] at a rate $\frac{1}{2^{i-T}}$, then $\frac{|\Lambda_i|}{2^{i-T}} \approx \frac{1}{\epsilon^2}$ elements of Λ_i will be sampled
- \diamondsuit Intuition: Use their approximate frequencies to estimate C_i

 \clubsuit Standard variance argument shows rescaling the sampled contribution by 2^{i-T} gives a $(1+\varepsilon)$ -approximation \widehat{C}_i to C_i , if we sample $\frac{1}{\varepsilon^2}$ elements of Λ_i

- How to compute approximate frequencies?
- If we sample the universe [n] at a rate $\frac{1}{2^{i-T}}$, the frequency moment $U_p^{(i)}$ of the subsampled stream will be $\frac{F_p}{2^{i-T}}$ in expectation
- \clubsuit We have $f_k^p \in \left[\frac{F_p}{2^i}, \frac{2F_p}{2^i}\right]$, so $f_k^p \ge \frac{1}{2^T} U_p^{(i)}$ with $\frac{1}{2^T} = \varepsilon^2$
- \clubsuit In summary, we expect k to be a heavy-hitter with respect to $U_p^{(i)}$
- \clubsuit Use an L_2 heavy-hitter algorithm with threshold $\frac{\varepsilon^{2/p}}{n^{1/2-1/p}}$ w.r.t. $U_p^{(i)}$ to find k and obtain an approximate frequency $\widehat{f_k}$

❖ If $C_i = F_p$ for some $i \ge T$ and $f_k^p \in \left[\frac{F_p}{2^i}, \frac{2F_p}{2^i}\right]$ then an L_2 heavy-hitter algorithm on a substream that samples k with rate $\frac{1}{2^{i-T}}$ and threshold $\frac{\varepsilon^{2/p}}{n^{1/2-1/p}}$ can obtain an approximate frequency $\widehat{f_k}$

 \clubsuit If $\widehat{f_k}$ is a $(1 + \varepsilon)$ -approximation to f_k for all such k, then we can rescale and obtain a $(1 + O(\varepsilon))$ -approximation $\widehat{C_i}$ to C_i

Recall: To obtain a $(1 + \varepsilon)$ -approximation to F_p , it suffices to obtain a $(1 + \varepsilon)$ -approximation \widehat{C}_i to the contribution C_i of each level set Λ_i with $C_i \geq \varepsilon F_p$

- ightharpoonup Previous argument shows $(1 + \varepsilon)$ -approximation $\widehat{C_i}$ to the contribution C_i if $C_i = F_p$
- Same argument will work if $C_i = \gamma_i F_p$ for some $\gamma_i \in [\varepsilon, 1]$, since we get $(1 + \varepsilon/\gamma_i)$ -approximation \widehat{C}_i to the contribution C_i , which gives at most εF_p additive error to C_i

Lower Bound

- \Leftrightarrow Space $\Omega\left(\frac{1}{\varepsilon^2}n^{1-2/p}\right)$ necessary for one-pass arbitrary-order streams
- ❖ We define the (t, ε, n) -player set disjointness estimation problem $(t, \varepsilon, n) DisjInfty$ and show it has total communication cost $\Omega\left(\frac{n}{t}\right)$
- \Leftrightarrow Set $t = \Theta\left(\frac{1}{\varepsilon}n^{1/p}\right)$ and show a reduction from $(1 + \varepsilon)$ -approximation of F_p to $(t, \varepsilon, n) DisjInfty$

Lower Bound

- \Leftrightarrow Space $\Omega\left(\frac{1}{\varepsilon^2}n^{1-2/p}\right)$ necessary for one-pass arbitrary-order streams
- ❖ We define the (t, ε, n) -player set disjointness estimation problem $(t, \varepsilon, n) DisjInfty$ and show it has total communication cost $\Omega\left(\frac{n}{t}\right)$
- \Leftrightarrow Set $t = \Theta\left(\frac{1}{\varepsilon}n^{1/p}\right)$ and show a reduction from $(1 + \varepsilon)$ -approximation of F_p to $(t, \varepsilon, n) DisjInfty$

(t, ε, n) -Player Set Disjointness Estimation

- ❖ There are t+1 players $P_1, P_2, ..., P_{t+1}$. For each $s \in [t], P_s$ receives a vector $v_s \in \{0,1\}^n$. Player P_{t+1} receives a "spike location" $j \in [n]$ and a bit $c \in \{0,1\}$.
- \Leftrightarrow Let $u = \sum_{S} v_{S}$. The promise is that:
 - $u_i \leq 1$ for each $i \neq j$ (player sets are disjoint outside of coordinate j)
 - \Leftrightarrow either $u_j \leq 1$ or $u_j = t$ (either player sets are disjoint at coordinate j or all players have j in their sets)
- \clubsuit Player P_{t+1} must differentiate between the three cases:

(t, ε, n) -Player Set Disjointness Estimation

- ❖ Intuition: Since $P_1, P_2, ..., P_t$ do not know the spike location $j \in [n]$, they must solve the problem on all coordinates
- Solving multi-party set disjointness on a single coordinate is roughly solving the AND problem of t bits
- AND is $\Omega\left(\frac{1}{t}\right)$ [Jayram09]
- \clubsuit Use direct sum embedding to show $(t, \varepsilon, n) DisjInfty$ has total communication cost $\Omega\left(\frac{n}{t}\right)$

Reduction

Recall that for each $s \in [t]$, P_s receives a vector $v_s \in \{0,1\}^n$. Player P_{t+1} receives a "spike location" $j \in [n]$ and a bit $c \in \{0,1\}$.

- \Leftrightarrow For each $s \in [t]$, P_s inserts the coordinates of vector v_s into the stream
- P_{t+1} adds the vector $\frac{ct}{\varepsilon}e_j$, where e_j is the elementary vector corresponding to the spike location
- \clubsuit Intuition: Mass added to spike location provides F_p separation

Reduction

- Recall that for each $s \in [t]$, P_s receives a vector $v_s \in \{0,1\}^n$. Player P_{t+1} receives a "spike location" $j \in [n]$ and a bit $c \in \{0,1\}$.
- \clubsuit Let $u = \sum_{S} v_{S}$ and $t = \Theta\left(\frac{1}{\varepsilon}n^{1/p}\right)$
- \Leftrightarrow If c=0, then $||x||_p^p \le n + \frac{c^p}{\varepsilon^p} n$ for some constant C>0
- \Leftrightarrow If c=1 and $u_j=1$, then $\frac{c^p}{\varepsilon^{2p}}$ $n\leq \|x\|_p^p\leq n+p+\frac{pc^p}{\varepsilon^{2p}}$ n
- \Leftrightarrow If c=1 and $u_j=t$, then $||x||_p^p \geq \left(1+\frac{1}{\varepsilon}\right)^p \frac{pC^p}{\varepsilon^{2p}} n$

Lower Bound

- $(1+\varepsilon)$ -approximation of F_p separates these three cases and thus solves $(t,\varepsilon,n)-DisjInfty$ for $t=\Theta\left(\frac{1}{\varepsilon}n^{1/p}\right)$
- $(1+\varepsilon)$ -approximation of F_p requires $\Omega\left(\frac{1}{\varepsilon^2}n^{1-2/p}\right)$ space