Separations for Estimating Large Frequency Moments on Data Streams

David P. Woodruff
Samson Zhou
Carnegie
Mellon
University

Streaming Model

* Input: Elements of an underlying data set S, which arrives sequentially
* Output: Evaluation (or approximation) of a given function
* Goal: Use space sublinear in the size m of the input S
* Given a set S of m elements from [n], let f_{k} be the frequency of element k (how often it appears)

$$
112121123 \rightarrow[5,3,1,0]:=f
$$

Arbitrary-Order vs Random-Order Streams

* Arbitrary-order: Elements inducing f arrive sequentially in an arbitrary order (worst-case)

Random-order: Elements inducing f arrive in a uniformly random order (average-case)

$$
\begin{aligned}
& 112121123 \rightarrow[5,3,1,0]:=f \\
& 231112211 \rightarrow[5,3,1,0]:=f
\end{aligned}
$$

Frequency Moments

* Let F_{p} be the p-th frequency moment of the vector $f \in Z^{n}$:

$$
F_{p}=f_{1}^{p}+f_{2}^{p}+\cdots+f_{n}^{p}
$$

* Goal: Given a set S of m elements from [n] and an accuracy parameter ε, output a $(1+\varepsilon)$-approximation to F_{p}
* Motivation: Entropy estimation, network anomaly detection,...

Constant-Factor Approximation

* Space $O(\log n)$ algorithm for F_{p} with $p \in(0,2]$
[BlasiokDingNelson17, BravermanViolaWoodruffYang18]
* Space $\widetilde{\Omega}\left(n^{1-2 / p}\right)$ necessary for F_{p} with $p>2$ [Ganguly12] on arbitrary-order streams, $\Omega\left(n^{1-2.5 / p}\right)$ for random-order streams [ChakrabartiCormodeMcGregor16]

$(1+\varepsilon)$-Approximation for F_{p} with $p>2$

* Space $\tilde{O}\left(\frac{1}{\varepsilon^{2}} n^{1-2 / p}\right)$ algorithm [Ganguly11, GangulyWoodruff18]
* Space $\Omega\left(\frac{1}{\varepsilon^{2}} \frac{n^{1-2 / p}}{\log n}\right)$ necessary for arbitrary-order streams [Ganguly12], $\Omega\left(n^{1-2.5 / p}+\frac{1}{\varepsilon^{2}}\right)$ for random-order streams [ChakrabartiCormodeMcGregor16]

Our Results: F_{p} Moment Estimation, $p>2$

* Space $\tilde{O}\left(\frac{1}{\varepsilon^{4 / p}} n^{1-2 / p}\right)$ algorithm for random-order insertion-only streams
* Space $\tilde{O}\left(\frac{1}{\varepsilon^{4 / p}} n^{1-2 / p}\right)$ algorithm for two-pass streams in arbitraryorder, even with turnstile updates
* Space $\Omega\left(\frac{1}{\varepsilon^{2}} n^{1-2 / p}\right)$ necessary for one-pass arbitrary-order streams
* Results show separation between one-pass arbitrary-order and onepass random-order, multi-pass arbitrary order

Level Sets

* Partition the coordinates $k \in[n]$ into level sets Λ_{i} based on the frequencies of each item, so that $k \in \Lambda_{i}$ if

$$
f_{k}^{p} \in\left[\frac{F_{p}}{2^{i}}, \frac{2 F_{p}}{2^{i}}\right]
$$

* Define contribution C_{i} of level set Λ_{i} as the total contribution of all coordinates in Λ_{i} to F_{p}

$$
C_{i}=\sum_{k \in \Lambda_{i}} f_{k}^{p}
$$

Level Sets

$\%$ Intuition: Level sets Λ_{i} decompose F_{p}

$$
F_{p}=\sum_{k \in[n]} f_{k}^{p}=\sum_{i} \sum_{k \in \Lambda_{i}} f_{k}^{p}=\sum_{i} C_{i}
$$

* To obtain a $(1+\varepsilon)$-approximation to F_{p}, it suffices to obtain a $(1+\varepsilon)$-approximation \widehat{C}_{i} to the contribution C_{i} of each level set Λ_{i} with $C_{i} \geq \varepsilon F_{p}$

Heavy-Hitters

* Let L_{p} be the norm of the frequency vector:

$$
L_{p}=\left(f_{1}^{p}+f_{2}^{p}+\cdots+f_{n}^{p}\right)^{1 / p}
$$

* Goal: Given a set S of m elements from [n] and a threshold ε, output the elements k such that $f_{k}>\varepsilon L_{p}$ and their approximate frequencies $\widehat{f_{k}}$
* Motivation: DDoS prevention, iceberg queries, moment estimation

Heavy-Hitters to Level Set Contributions

* If $f_{k}^{p}>\varepsilon^{2} F_{p}$, then k is an L_{2} heavy-hitter with threshold $\frac{\varepsilon^{2 / p}}{n^{1 / 2-1 / p}}$

$$
\star f_{k}^{p}>\varepsilon^{2} F_{p} \text { implies } f_{k}>\varepsilon^{2 / p} L_{p} \text { so } f_{k}^{2}>\varepsilon^{4 / p} L_{p}^{2}>\frac{\varepsilon^{4 / p}}{n^{1-2 / p}} F_{2}
$$

* Use an L_{2} heavy-hitter algorithm with threshold $\frac{\varepsilon^{2 / p}}{n^{1 / 2-1 / p}}$ to find k and obtain a $(1+\varepsilon)$ approximate frequency $\widehat{f_{k}}$

Level Sets with Large Frequencies

* Recall: To obtain a $(1+\varepsilon)$-approximation to F_{p}, it suffices to obtain a $(1+\varepsilon)$-approximation \widehat{C}_{i} to the contribution C_{i} of each level set Λ_{i} with $C_{i} \geq \varepsilon F_{p}$
* If $f_{k}^{p}>\varepsilon^{2} F_{p}$, then an L_{2} heavy-hitter algorithm with threshold $\frac{\varepsilon^{2 / p}}{n^{1 / 2-1 / p}}$ can find k and obtain a $(1+\varepsilon)$ approximate frequency $\widehat{f_{k}}$
* In summary, we obtain a $(1+\varepsilon)$-approximation $\widehat{C_{i}}$ to the contribution C_{i} of each level set Λ_{i} with $i<\log \frac{1}{\varepsilon^{2}}$

Idealized Algorithm

1. Form $O(\log n)$ streams $S_{0}, S_{1}, S_{2}, S_{3}, \ldots$ by subsampling the universe $\left[n\right.$] at rate $\frac{1}{2^{j}}$ for $j=0,1,2,3, \ldots$
2. Use L_{2} heavy-hitter algorithms with threshold $\frac{\varepsilon^{2 / p}}{n^{1 / 2-1 / p}}$ on the substreams $S_{0}, S_{1}, S_{2}, S_{3}, \ldots$ and find $(1+\varepsilon)$-approximate frequencies \widehat{f}_{k} to each reported heavy-hitter $k \in[n]$
3. Use the approximate frequencies $\widehat{f_{k}}$ to compute approximate contributions $\widehat{C_{i}}$ to C_{i}
4. Output $\sum_{i} \widehat{C_{i}}$

Space Complexity / Source of the Separation

* Space determined by L_{2} heavy-hitter algorithms with threshold $\frac{\varepsilon^{2 / p}}{n^{1 / 2-1 / p}}$ on the substreams $S_{0}, S_{1}, S_{2}, S_{3}, \ldots$ to find $(1+\varepsilon)$ approximate frequencies \widehat{f}_{k} to each reported heavy-hitter $k \in[n]$
* Can black-box heavy-hitter algorithms for one-pass random-order streams [BravermanGargWoodruff20]
* Similar results are NOT known for one-pass arbitrary-order streams

F_{p} Moment Estimation, $p>2$

* Space $\tilde{O}\left(\frac{1}{\varepsilon^{4 / p}} n^{1-2 / p}\right)$ algorithm for random-order streams
* Space $\tilde{O}\left(\frac{1}{\varepsilon^{4 / p}} n^{1-2 / p}\right)$ algorithm for two-pass streams in arbitraryorder, even with turnstile updates
* Space $\Omega\left(\frac{1}{\varepsilon^{2}} n^{1-2 / p}\right)$ necessary for one-pass arbitrary-order streams
* Results show separation between one-pass arbitrary-order and onepass random-order, multi-pass arbitrary order

Level Sets with Small Frequencies

* Remains to approximate the contribution C_{i} of each level set Λ_{i} with $i \geq \log \frac{1}{\varepsilon^{2}}$ and $C_{i} \geq \varepsilon F_{p}$
* Suppose $C_{i}=F_{p}$ for some $i \geq T$, where $T=\log \frac{1}{\varepsilon^{2}}$

Since $f_{k}^{p} \in\left[\frac{F_{p}}{2^{i}}, \frac{2 F_{p}}{2^{i}}\right]$ for each $k \in \Lambda_{i}$, then $\left|\Lambda_{i}\right| \geq 2^{i-1}$

Level Sets with Small Frequencies

* If we sample the universe $[n]$ at a rate $\frac{1}{2^{i-T}}$, then $\frac{\left|\Lambda_{i}\right|}{2^{i-T}} \approx \frac{1}{\varepsilon^{2}}$ elements of Λ_{i} will be sampled
Intuition: Use their approximate frequencies to estimate C_{i}
* Standard variance argument shows rescaling the sampled contribution by 2^{i-T} gives a $(1+\varepsilon)$-approximation \widehat{C}_{i} to C_{i}, if we sample $\frac{1}{\varepsilon^{2}}$ elements of Λ_{i}

Level Sets with Small Frequencies

* How to compute approximate frequencies?
* If we sample the universe $[n]$ at a rate $\frac{1}{2^{i-T}}$, the frequency moment $U_{p}^{(i)}$ of the subsampled stream will be $\frac{F_{p}}{2^{i-T}}$ in expectation
* We have $f_{k}^{p} \in\left[\frac{F_{p}}{2^{i}}, \frac{2 F_{p}}{2^{i}}\right]$, so $f_{k}^{p} \geq \frac{1}{2^{T}} U_{p}^{(i)}$ with $\frac{1}{2^{T}}=\varepsilon^{2}$
* In summary, we expect k to be a heavy-hitter with respect to $U_{p}^{(i)}$
* Use an L_{2} heavy-hitter algorithm with threshold $\frac{\varepsilon^{2 / p}}{n^{1 / 2-1 / p}}$ w.r.t. $U_{p}^{(i)}$ to find k and obtain an approximate frequency $\widehat{f_{k}}$

Level Sets with Small Frequencies

* If $C_{i}=F_{p}$ for some $i \geq T$ and $f_{k}^{p} \in\left[\frac{F_{p}}{2^{i}}, \frac{2 F_{p}}{2^{i}}\right]$ then an L_{2} heavyhitter algorithm on a substream that samples k with rate $\frac{1}{2^{i-T}}$ and threshold $\frac{\varepsilon^{2 / p}}{n^{1 / 2-1 / p}}$ can obtain an approximate frequency $\widehat{f_{k}}$
* If $\widehat{f_{k}}$ is a $(1+\varepsilon)$-approximation to f_{k} for all such k, then we can rescale and obtain a $(1+O(\varepsilon))$-approximation \widehat{C}_{i} to C_{i}

Level Sets with Small Frequencies

- Recall: To obtain a $(1+\varepsilon)$-approximation to F_{p}, it suffices to obtain a $(1+\varepsilon)$-approximation \widehat{C}_{i} to the contribution C_{i} of each level set Λ_{i} with $C_{i} \geq \varepsilon F_{p}$
* Previous argument shows $(1+\varepsilon)$-approximation \widehat{C}_{i} to the contribution C_{i} if $C_{i}=F_{p}$
* Same argument will work if $C_{i}=\gamma_{i} F_{p}$ for some $\gamma_{i} \in[\varepsilon, 1]$, since we get $\left(1+\varepsilon / \gamma_{i}\right)$-approximation \widehat{C}_{i} to the contribution C_{i}, which gives at most εF_{p} additive error to C_{i}

Lower Bound

* Space $\Omega\left(\frac{1}{\varepsilon^{2}} n^{1-2 / p}\right)$ necessary for one-pass arbitrary-order streams
* We define the (t, ε, n)-player set disjointness estimation problem (t, ε, n) - DisjInfty and show it has total communication cost $\Omega\left(\frac{n}{t}\right)$
* Set $t=\Theta\left(\frac{1}{\varepsilon} n^{1 / p}\right)$ and show a reduction from $(1+\varepsilon)$ approximation of F_{p} to (t, ε, n) - DisjInfty

Lower Bound

* Space $\Omega\left(\frac{1}{\varepsilon^{2}} n^{1-2 / p}\right)$ necessary for one-pass arbitrary-order streams
* We define the (t, ε, n)-player set disjointness estimation problem (t, ε, n) - DisjInfty and show it has total communication cost $\Omega\left(\frac{n}{t}\right)$
* Set $t=\Theta\left(\frac{1}{\varepsilon} n^{1 / p}\right)$ and show a reduction from $(1+\varepsilon)$ approximation of F_{p} to (t, ε, n) - DisjInfty

(t, ε, n)-Player Set Disjointness Estimation

* There are $t+1$ players $P_{1}, P_{2}, \ldots, P_{t+1}$. For each $s \in[t], P_{s}$ receives a vector $v_{s} \in\{0,1\}^{n}$. Player P_{t+1} receives a "spike location" $j \in[n]$ and a bit $c \in\{0,1\}$.
* Let $u=\sum_{s} v_{S}$. The promise is that:
* $u_{i} \leq 1$ for each $i \neq j$ (player sets are disjoint outside of coordinate j)
* either $u_{j} \leq 1$ or $u_{j}=t$ (either player sets are disjoint at coordinate j or all players have j in their sets)
Player P_{t+1} must differentiate between the three cases:
* (1) $u_{j}+\frac{c t}{\varepsilon} \leq t$, (2) $u_{j}+\frac{c t}{\varepsilon} \in\left\{\frac{t}{\varepsilon}, \frac{t}{\varepsilon}+1\right\}$, (3) $u_{j}+\frac{c t}{\varepsilon}=(1+\varepsilon) \frac{t}{\varepsilon}$

(t, ε, n)-Player Set Disjointness Estimation

* Intuition: Since $P_{1}, P_{2}, \ldots, P_{t}$ do not know the spike location $j \in$ [n], they must solve the problem on all coordinates
* Solving multi-party set disjointness on a single coordinate is roughly solving the AND problem of t bits
* Hellinger distance argument shows the information complexity of AND is $\Omega\left(\frac{1}{t}\right)$ [Jayram09]
Use direct sum embedding to show (t, ε, n) - DisjInfty has total communication cost $\Omega\left(\frac{n}{t}\right)$

Reduction

* Recall that for each $s \in[t], P_{s}$ receives a vector $v_{s} \in\{0,1\}^{n}$. Player P_{t+1} receives a "spike location" $j \in[n]$ and a bit $c \in\{0,1\}$.
* For each $s \in[t], P_{s}$ inserts the coordinates of vector v_{s} into the stream
* P_{t+1} adds the vector $\frac{c t}{\varepsilon} e_{j}$, where e_{j} is the elementary vector corresponding to the spike location
Intuition: Mass added to spike location provides F_{p} separation

Reduction

$*$ Recall that for each $s \in[t], P_{s}$ receives a vector $v_{s} \in\{0,1\}^{n}$. Player P_{t+1} receives a "spike location" $j \in[n]$ and a bit $c \in\{0,1\}$.

* Let $u=\sum_{s} v_{s}$ and $t=\Theta\left(\frac{1}{\varepsilon} n^{1 / p}\right)$
* If $c=0$, then $\|x\|_{p}^{p} \leq n+\frac{C^{p}}{\varepsilon^{p}} n$ for some constant $C>0$
* If $c=1$ and $u_{j}=1$, then $\frac{C^{p}}{\varepsilon^{2 p}} n \leq\|x\|_{p}^{p} \leq n+p+\frac{p C^{p}}{\varepsilon^{2 p}} n$
* If $c=1$ and $u_{j}=t$, then $\|x\|_{p}^{p} \geq\left(1+\frac{1}{\varepsilon}\right)^{p} \frac{p c^{p}}{\varepsilon^{2 p}} n$

Lower Bound

* (1 $+\varepsilon$)-approximation of F_{p} separates these three cases and thus solves $(t, \varepsilon, n)-$ DisjInfty for $t=\Theta\left(\frac{1}{\varepsilon} n^{1 / p}\right)$
* $(1+\varepsilon)$-approximation of F_{p} requires $\Omega\left(\frac{1}{\varepsilon^{2}} n^{1-2 / p}\right)$ space

