
Learning a Latent Simplex in 
Input-Sparsity Time

Ainesh Bakshi (Carnegie Mellon University)

Chiranjib Bhattacharyya (Indian Institute of Science)

Ravi Kannan (Microsoft Research India)

David P. Woodruff (Carnegie Mellon University)

Samson Zhou (Carnegie Mellon University)



Latent Simplex Model

❖𝑀1, … ,𝑀𝑘 ∈ 𝑅𝑑 vertices of a 𝑘-simplex 𝑆

❖ 𝑑 = 2, 𝑘 = 5:
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Latent Simplex Model

❖𝑀1, … ,𝑀𝑘 ∈ 𝑅𝑑 vertices of a 𝑘-simplex 𝑆

❖ 𝑃1, … , 𝑃𝑛 latent points
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Latent Simplex Model

❖𝑀1, … ,𝑀𝑘 ∈ 𝑅𝑑 vertices of a 𝑘-simplex 𝑆

❖ 𝐴1, … , 𝐴𝑛 observed points
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Latent Simplex Model

❖𝑀1, … ,𝑀𝑘 ∈ 𝑅𝑑 vertices of a 𝑘-simplex 𝑆

❖ 𝐴1, … , 𝐴𝑛 observed points

❖ Goal: recover 𝑆
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Applications/Motivations

❖ Topic models: identify abstract topics in a collection of documents by 
discovering latent semantic structure

❖Mixed membership block stochastic model: recover communities in 
a network by observing frequencies of communication between 
nodes

❖ Adversarial clustering: learn the centers of clusters whose mixture 
forms a set of latent points that may be perturbed adversarially but 
with bounded norm



Topic Model (Latent Dirichlet Allocation)

❖𝑀1, … ,𝑀𝑘 ∈ 𝑅𝑑 vertices of a 𝑘-simplex 𝑆, where 𝑑 is the size of the 
dictionary and the 𝑖-th entry of 𝑀𝑗 represents the frequency of word 𝑖
in topic 𝑗

❖ 𝑃1, … , 𝑃𝑛 are latent points (distributions) so that 𝑃𝑖 = 𝑊𝑖𝑀, where 
𝑊𝑖 ∼ Dir(1/𝑘)

❖ 𝐴1, … , 𝐴𝑛 are observed points (documents) so that 𝐴𝑖 =
1

𝑚
σ𝑗=1
𝑚 𝑋𝑗, 

where 𝑋𝑗 is an elementary vector drawn from the multinomial 
distribution 𝑃𝑖



Results and Related Work

❖ Our result: Given certain geometric assumptions, there exists an 
algorithm with runtime ෨𝑂(𝑛𝑛𝑧 𝐴 ) that recovers 𝑆, e.g. each vertex is 
recovered up to “small” Euclidean distance 

❖ Previous: Bhattacharyya and Kannan [BK20] showed that given 
certain geometric assumptions, there exists an algorithm with 
runtime ෨𝑂(𝑘 ⋅ 𝑛𝑛𝑧 𝐴 ) that recovers 𝑆, e.g. each vertex is recovered 
up to “small” Euclidean distance 
❖ 𝑘 can be large in applications



Assumptions (1)

❖ [Well-Separateness] Each simplex vertex has non-trivial mass in the 
orthogonal complement of the span of the remaining vectors

❖ Also assumed by [BK20]

𝑀1 𝑀3 𝑀4𝑀2



Assumptions (2)

❖ [Proximate Latent Points] There exists a significant fraction of points 
near each simplex vertex

❖ Also assumed by [BK20]
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Assumptions (3)

❖ [Spectrally Bounded Perturbation] Total mass of perturbation should 
not be too large

❖ Also assumed by [BK20]

𝑀1 𝑀2



Assumptions (4)

❖ [Significant Singular Values] The top 𝑘 singular values should make 
up most of the mass of the Frobenius norm

❖We show this assumption is necessary in improving upon ෨𝑂(𝑘 ⋅
𝑛𝑛𝑧 𝐴 ) runtime (else there exists algorithm with same runtime for 
spectral low rank approximation, which would be algorithmic 
breakthrough)

𝑀1 𝑀2



Technical Contribution

❖ Show that the subspaces obtained via spectral low-rank 
approximation are close to the true left and right top 𝑘 singular space 
in angular (sin Θ) distance

❖ To recover 𝑆, it suffices to consider the 𝑑-dimensional smoothed 
polytope in the 𝑘-dimensional space spanned by the top 𝑘 singular 
vectors of the data matrix 𝐴



Input-Sparsity Spectral-Frobenius LRA

❖ Given 𝐴 ∈ 𝑅𝑑×𝑛, 𝜖 > 0, there exists an algorithm that outputs 
matrices 𝑌, 𝑍 such that 𝐴 − 𝑌𝑍 2

2 ≤ (1 + 𝜖) 𝐴 − 𝐴𝑘 2
2 +

𝜖

𝑘
𝐴 − 𝑌𝑍 𝐹

2 in time ෨𝑂(𝑛𝑛𝑧 𝐴 + 𝑛 + 𝑑 𝑝𝑜𝑙𝑦(𝑘/𝜖))

[CohenElderMuscoMuscoPersu15]

❖ Set 𝜖 to be the gap in the significant singular values assumption 
gives constant factor spectral low-rank approximation in input-
sparsity time! Use 𝑌𝑍 as a proxy for 𝐴.

❖ Avoids ෨𝑂(𝑘 ⋅ 𝑛𝑛𝑧 𝐴 ) runtime from repeated power iteration 



Our Algorithm

❖ Compute rank 𝑘 matrices 𝑌, 𝑍 so that 𝐴 − 𝑌𝑍 2
2 ≤ (1 + 𝜖)

𝐴 − 𝐴𝑘 2
2

❖ Initiate ሚ𝑆 = ∅ and repeat 𝑘 times:
❖ Let 𝑈𝑡 be an orthonormal basis for the vectors in ሚ𝑆

❖ Compute the projection matrix 𝑃𝑡 that projects onto the row span of ሚ𝑆

❖ Generate a random Gaussian 𝑔𝑡 ∈ 𝑅𝑘 and set 𝑢𝑡 = 𝑔𝑡𝑌
⊤ 𝐼𝑑 − 𝑃𝑡 𝑌𝑍

❖ Add into ሚ𝑆 the average of the 𝛿𝑛 columns of 𝐴 indexed by the largest 𝛿𝑛
coordinates of 𝑢𝑡

❖ Output ሚ𝑆



Intuition

❖ The subspaces obtained via spectral low-rank approximation are 
close to the true left and right top 𝑘 singular space in angular (sin Θ) 
distance

❖ To recover 𝑆, it suffices to consider the 𝑑-dimensional smoothed 
polytope in the 𝑘-dimensional space spanned by the top 𝑘 singular 
vectors of the approximate data matrix 𝑌𝑍

❖ Subset smoothing (average of the 𝛿𝑛 coordinates) to reduce the 
affects of outliers

❖ Repeatedly sample random vectors from the subspace orthogonal to 
the set of vertex approximations picked thus far




