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Latent Simplex Model

& My, ..., M, € R? vertices of a k-simplex S
A4, ..., A, observed points
¢ Goal: recover S




Applications/Motivations

** Topic models: identify abstract topics in a collection of documents by
discovering latent semantic structure

s Mixed membership block stochastic model: recover communities in

a network by observing frequencies of communication between
nodes

s Adversarial clustering: learn the centers of clusters whose mixture

forms a set of latent points that may be perturbed adversarially but
with bounded norm



Topic Model (Latent Dirichlet Allocation)

o My, .., M, € R% vertices of a k-simplex S, where d is the size of the

dictionary and the i-th entry of M; represents the frequency of word i
In topic J

Py, ..., P, are latent points (distributions) so that P; = W;M, where
Wi ~ Dlr(l/k)

. . 1

A4, ..., A, are observed points (documents) so that A; = — }-n=1Xj,
where X; is an elementary vector drawn from the multinomial
distribution P;



Results and Related Work

¢ Our result: Given certain geometric assumptions, there exists an
algorithm with runtime O (nnz(A)) that recovers S, e.g. each vertex is
recovered up to “small” Euclidean distance

¢ Previous: Bhattacharyya and Kannan [BK20] showed that given
certain geometric assumptions, there exists an algorithm with
runtime O (k - nnz(A)) that recovers S, e.g. each vertex is recovered
up to “small” Euclidean distance

¢ k can be large in applications



Assumptions (1)

s [Well-Separateness] Each simplex vertex has non-trivial mass in the
orthogonal complement of the span of the remaining vectors

** Also assumed by [BK20]



Assumptions (2)

** [Proximate Latent Points] There exists a significant fraction of points
near each simplex vertex

% Also assumed by [BK20] QMl
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Assumptions (3)

¢ [Spectrally Bounded Perturbation] Total mass of perturbation should
not be too large

** Also assumed by [BK20]



Assumptions (4)

¢ [Significant Singular Values] The top k singular values should make
up most of the mass of the Frobenius norm

** We show this assumption is necessary in improving upon 5(/{ -
nnz(A)) runtime (else there exists algorithm with same runtime for
spectral low rank approximation, which would be algorithmic
breakthrough)



Technical Contribution

** Show that the subspaces obtained via spectral low-rank
approximation are close to the true left and right top k singular space
in angular (sin ©) distance

*»* To recover S, it suffices to consider the d-dimensional smoothed
polytope in the k-dimensional space spanned by the top k singular
vectors of the data matrix A



Input-Sparsity Spectral-Frobenius LRA

% Given A € R¥*" ¢ > 0, there exists an algorithm that outputs
matrices Y, Z suchthat ||A — YZ|[|5 < (1 + €) ||A — A,l|5 +

%IIA — YZ||% in time O (nnz(4) + (n + d)poly(k/e))
[CohenElderMuscoMuscoPersul5]

*»* Set € to be the gap in the significant singular values assumption
gives constant factor spectral low-rank approximation in input-
sparsity time! Use YZ as a proxy for A.

< Avoids O (k - nnz(A)) runtime from repeated power iteration



Our Algorithm

» Compute rank k matrices Y, Z sothat ||A — YZ||5 < (1 + €)
1A — Agll5

% Initiate S = @ and repeat k times:

% Let U, be an orthonormal basis for the vectors in S

<» Compute the projection matrix P, that projects onto the row span of S
< Generate a random Gaussian g, € R* and setu, = g,Y " (I; — P,)YZ

% Add into S the average of the dn columns of A indexed by the largest én
coordinates of u;

< Output S
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Intultion

** The subspaces obtained via spectral low-rank approximation are
close to the true left and right top k singular space in angular (sin 0)
distance

*»* To recover S, it suffices to consider the d-dimensional smoothed
polytope in the k-dimensional space spanned by the top k singular
vectors of the approximate data matrix YZ

** Subset smoothing (average of the dn coordinates) to reduce the
affects of outliers

** Repeatedly sample random vectors from the subspace orthogonal to
the set of vertex approximations picked thus far
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