Learning a Latent Simplex in Input-Sparsity Time

Ainesh Bakshi (Carnegie Mellon University) Chiranjib Bhattacharyya (Indian Institute of Science)

Ravi Kannan (Microsoft Research India)

David P. Woodruff (Carnegie Mellon University)

Samson Zhou (Carnegie Mellon University)

- $Arr M_1, ..., M_k \in \mathbb{R}^d$ vertices of a k-simplex S
- d = 2, k = 5:

 M_5 M_2

 M_1

 M_4 M_3

 $Arr M_1, ..., M_k \in \mathbb{R}^d$ vertices of a k-simplex S

 P_1, \dots, P_n latent points

- $Arr M_1, ..., M_k \in \mathbb{R}^d$ vertices of a k-simplex S
- A_1, \dots, A_n observed points

 $Arr M_1, ..., M_k \in \mathbb{R}^d$ vertices of a k-simplex S

 A_1, \dots, A_n observed points M_1 ❖ Goal: recover S M_5 M_2 M_3

Applications/Motivations

- ❖ Topic models: identify abstract topics in a collection of documents by discovering latent semantic structure
- Mixed membership block stochastic model: recover communities in a network by observing frequencies of communication between nodes
- Adversarial clustering: learn the centers of clusters whose mixture forms a set of latent points that may be perturbed adversarially but with bounded norm

Topic Model (Latent Dirichlet Allocation)

- $M_1, ..., M_k \in \mathbb{R}^d$ vertices of a k-simplex S, where d is the size of the dictionary and the i-th entry of M_j represents the frequency of word i in topic j
- P_1, \dots, P_n are latent points (distributions) so that $P_i = W_i M$, where $W_i \sim \text{Dir}(1/k)$
- A_1, \dots, A_n are observed points (documents) so that $A_i = \frac{1}{m} \sum_{j=1}^m X_j$, where X_j is an elementary vector drawn from the multinomial distribution P_i

Results and Related Work

- **Previous:** Bhattacharyya and Kannan [BK20] showed that given certain geometric assumptions, there exists an algorithm with runtime $\tilde{O}(k \cdot nnz(A))$ that recovers S, e.g. each vertex is recovered up to "small" Euclidean distance
 - k can be large in applications

Assumptions (1)

- ❖ [Well-Separateness] Each simplex vertex has non-trivial mass in the orthogonal complement of the span of the remaining vectors
- ❖ Also assumed by [BK20]

Assumptions (2)

- ❖ [Proximate Latent Points] There exists a significant fraction of points near each simplex vertex
- \clubsuit Also assumed by [BK20]

Assumptions (3)

- Spectrally Bounded Perturbation Total mass of perturbation should not be too large
- ❖ Also assumed by [BK20]

Assumptions (4)

- \clubsuit [Significant Singular Values] The top k singular values should make up most of the mass of the Frobenius norm
- * We show this assumption is necessary in improving upon $\tilde{O}(k \cdot nnz(A))$ runtime (else there exists algorithm with same runtime for spectral low rank approximation, which would be algorithmic breakthrough)

Technical Contribution

 \clubsuit Show that the subspaces obtained via spectral low-rank approximation are close to the true left and right top k singular space in angular ($\sin \Theta$) distance

 \clubsuit To recover S, it suffices to consider the d-dimensional smoothed polytope in the k-dimensional space spanned by the top k singular vectors of the data matrix A

Input-Sparsity Spectral-Frobenius LRA

- ❖ Given $A \in \mathbb{R}^{d \times n}$, $\epsilon > 0$, there exists an algorithm that outputs matrices Y, Z such that $||A YZ||_2^2 \le (1 + \epsilon) ||A A_k||_2^2 + \frac{\epsilon}{k} ||A YZ||_F^2$ in time $\tilde{O}(nnz(A) + (n+d)poly(k/\epsilon))$ [CohenElderMuscoMuscoPersu15]
- \clubsuit Set ϵ to be the gap in the significant singular values assumption gives constant factor spectral low-rank approximation in input-sparsity time! Use YZ as a proxy for A.
- \diamond Avoids $\tilde{O}(k \cdot nnz(A))$ runtime from repeated power iteration

Our Algorithm

- ❖ Compute rank k matrices Y, Z so that $||A YZ||_2^2 \le (1 + \epsilon)$ $||A A_k||_2^2$
- ightharpoonup Initiate $\tilde{S} = \emptyset$ and repeat k times:
 - \clubsuit Let U_t be an orthonormal basis for the vectors in \tilde{S}
 - \clubsuit Compute the projection matrix P_t that projects onto the row span of \tilde{S}
 - Generate a random Gaussian $g_t \in \mathbb{R}^k$ and set $u_t = g_t Y^{\top} (I_d P_t) YZ$
 - ightharpoonup Add into $lap{S}$ the average of the δn columns of A indexed by the largest δn coordinates of u_t
- **❖** Output *Š*

Intuition

- \clubsuit The subspaces obtained via spectral low-rank approximation are close to the true left and right top k singular space in angular (sin Θ) distance
- \clubsuit To recover S, it suffices to consider the d-dimensional smoothed polytope in the k-dimensional space spanned by the top k singular vectors of the approximate data matrix YZ
- \clubsuit Subset smoothing (average of the δn coordinates) to reduce the affects of outliers
- Repeatedly sample random vectors from the subspace orthogonal to the set of vertex approximations picked thus far

