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g(x) = x3—5x*+11x — 6



Polynomial Fitting

% Given q(t,), ..., q(t,;,), recover the polynomial g (x)

¢ For a degree d polynomial g(x), must have m = d + 1 samples to
recover g(x)



Polynomial Fitting

g(x) = azx®+--+a;x +qg

q(t) = agt;% + -+ ast; + ag
q(ty) = agt,* + -+ ast, + aq

q(tm) = agty,® + -+ agty, + ag



Polynomial Fitting

¢ Form = d + 1, any choice of distinct t, ..., t,,, can recover q(x)

** Solve the linear system, Lagrangian interpolation, etc.



Polynomial Regression

% For asignal f, recover the degree d polynomial g(x) that is the
“best fit” to [

** What does best fit mean?



Polynomial Regression

» = (L1f© —q@Pae) "’
w = mmax |f (£) —q(®)]
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¢ Polynomial regression: Given € > 0 and p € [1, o], output g(t)
such that

“f o éI\”p = (1 + 8)( min “f o q”p)

deg(q)=d



Polynomial Regression
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Sample Complexity

¢ Sample complexity: Number m of locations t4, ..., t,,, at which the
signal f is read

s* Sample complexity of polynomial fittingism = d + 1

** What is the sample complexity of polynomial regression?



Deterministic Algorithms Do Not Work
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Deterministic Algorithms Do Not Work




Previous Work for L, Regression

dlogd

“* (1 + &)-approximation to L, regression with O ( ) gueries
[RauhutWard12, CohenDavenportlLeviatan13, Coheangllorat|13]

% (1 + &)-approximation to L, regression with O (Q) queries

&
[ChenPricel9]



Previous Work for L., Regression

% O(log d)-approximation to L., regression with O(d log d) queries
[Trefethen12]

%+ Constant factor approximation to L., regression with O(d logd)
queries [KaneKarmalkarPricel7]
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Our Results (1)

. : : : : log@®) ¢ :
¢ (1 + &)-approximation to L,, regression with dp ( o) ) queries

from the Chebyshev density forallp = 1

** Upper bound shows separation in the degree d between polynomial

L,, regression and matrix L,, regression, which requires Q(dp/z)
samples [LiWangWoodruff20]



Our Results (II)

. 1 . L
LX) (gp_l) queries are necessary for (1 + ¢)-approximation to L,

regression

** Proof recovers a result by [KaneKarmalkarPricel7] showing
impossibility of (2 — &)-approximation to L., regression



Approach Sample Complexity | Approximation
. | log g\ P
L, sensitivity sampling ([MMWY21] + Theorem 5.3) d’p (—”E—) (1+¢)
loga ) OV
L, sensitivity + Lewis weight sampling [MMWY21] dmax(1,p/2) (%) (1+¢)
L, Lewis weight sampling [MMM™22] dp log d 0(1)

Chebyshev measure sampling for all p > 1 (our results)

(I+¢)




Algorithm

. Sample with respect to

Chebyshev density on
[—1,1]

Return approximately
optimal solution on
sketched instance




Questions? Format

** Part 1: Background _ 1. Show Chebyshev density
% Part 2: Subspace Embeddings <~ are the L, sensitivities
< Part 3: Lewis Weights - 2. Show Chebyshev density

are the Lewis weights

\ 3. Uniform sampling + Lewis
weight sampling for p €
[1,2]

. Tensor trick + compact net
forp > 2

o

» Part 4: Algorithm

/

/
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Subspace Embedding

s Subspace embedding: Given € > 0 and A €
R™2 find matrix T € R™*% with m « n,
such that for every x € R?,

T S

(1 = a)llAx|l, < ITx|l, < (1 + &)l[Ax]l,



Subspace Embedding

000 0 % If the rows of 4 are “roughly” uniform, could
uniformly sample a small number of rows of A
I and rescale them to form subspace

000 0!l embedding T

r



Leverage Scores

7/

s Intuition: how “important” a row is (importance sampling)
(ajx)?
1Ax||5

7/

* 7;,(4) = max

are the leverage scores of A (in this case of row a; )

</ (ai)x>2 (Cli,X)z
0‘0 . — — <
[1 0] 7;(A) = max e max ST (@ = 1
11



Leverage Scores

(ai;x>2 — max (ai,x)z
”AXH% Z?=1<ai;x)2

“ Forx=(1 —1):

10| 1  (a,x)* = (14 0)* =1and(a,,x)* =
[ ] (1-— 1)2 =0
1 1)1 )
(alrx>
(Cll,X)2+(a2,x)2

\/

% 7;(A) = max

o

=1,s07; =1

==



Leverage Scores

(ajx)? (aj,x)?
0:0 7:(A) = max — max
i(4) lAx]|3 ST (apx)?

“ Forx=(1 —1):

10| 1  (a,x)* = (14 0)* =1and(a,,x)* =
<a27x>2

N —
(aq,x)%2+(a,,x)?

=] O
(@)



Leverage Scores

(ajx)? (aj,x)?
0:0 7:(A) = max — max
i(4) lAx]|3 ST (apx)?

% Forx = (0 1):
100 < (a;,x)* = (04 0)* = 0and (a,, x)* =
[1 1][1] (O+1)° =1

(aer>2
(Cll,X)2+(a2,x)2

o

=1,s01, =1

==



Leverage Scores

(ajx)* max (aj,x)?
|Ax]|5 it {agx)?

¢ Forx = (1 0):

r N\ 5
109 X eral(f'>X)2 = %and infactt; = %
10|l o =1

10
10
10
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 7;(4) = max




Leverage Scores

7/

s Intuition: how “important” a row is (importance sampling)
(ajx)?
1Ax||5

7/

* 7;,(4) = max

are the leverage scores of A (in this case of row a; )

¢ Takex = (1 —1)toseethatr; =1
¢ Takex = (0 1)toseethatt, =1

10
11

r==—=—=1

[
o n : i
e Ti(A) = (,li(ATA) 1a£r1 ZTL' — : A :
I I

T



Leverage Scores

S : dlogd _
** Leverage score sampling: Sample O ( Ozg ) rows of A with
€ 2
probability proportional to leverage score 7;(A) = max <||aA‘;”>2
2

** Rescale sampled rows to form subspace embedding T

(1 = o)llAxll; < [ITx|l; < (1 + &)[|Ax]|;
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Linear Regression

Q
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** Find the vector x that minimizes
|Ax — bl
s “Least squares” optimization

* Find a vector X with ||[AX — b||, <
(1 + &)(min||Ax — b||,)



Linear Regression

*If B=[A;b|andy = |x;—1], then Ax — b = By



Linear Regression

*If B=[A;b|andy = |x;—1], then Ax — b = By
** If “free” access to all entries of B = |A; b], suffices to find a
subspace embedding for B and then minimize ||By||,



Linear Regression to Polynomial Regression
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Linear Regression to Polynomial Regression
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L, Polynomial Regression

: (aj,x)?
¢ Leverage score for matrices: 7; = max ||Alx||2
2
. : _ _ lq(®)]?
*¢ Leverage function for operators: 7(t) = magx

deg(q)=d llqll5

2
% Canshowt(t) <0 (\/%), so roughly O (d lzg d) samples from

the Chebyshev density suffice




Toward General p

¢ Analog of leverage score for general p?

(ajx)?

¢ Previous L, leverage scores: 7;(A) = max ax|2
2




Lp Sensitivities

(ay,x)[P
p
lax|?

* L, sensitivites: Tl-(p) (A) = max

*» Sample each row a; with probability p; < Ti(p) (A) gives L), subspace
embedding

¢ Pros: Easy to understand, generalize, i.e., “importance sampling”

< Cons: Gives suboptimal bounds, e.g., 0(d?) samples for p € [1,2)



Lp Sensitivities

- x )P
% L, sensitivities for matrices: 7"’ (A) = max I(al,x)llo
’ l lax|?
C e e ey t p
“** L, sensitivities for operators: T(p)(t) = magx la(®)]

deg(q)=<d ||CI||5

«» Want to bound 7(P)(t)



Upper Bound for L, Sensitivities

. lq(t)|P . (dplogd
% Structural result: 7(P)(¢) = degl(gicsd aI? <0 (mm( Newrs ,dzp))

% Normalize q(t) = 1, how small can ||q||g be?

11 q(t)




Upper Bound for L, Sensitivities

% Bernstein’s inequality: If g is a polynomial with degree d and |q(t)| <

: d -
1fort € [—1,1],then |q'(t)] < mfor allt € [—1,1]

** Markov brothers’ inequality: If g is a polynomial with degree d and
lg(t)] < 1fort € [-1,1], then |¢'(t)| < d? forallt € [—1,1]



Lp Sensitivities

| | vi-t2 1
% If |g| achieves maximum at ¢, then ||CI||;I; = () (max( dpt 'dzp))

¢ Otherwise, show there exists a degree 0(d log d) polynomial r that
. . '{ ) 1
achieves maximum “near” t and |||r||g — IIqIIg <



Lp Sensitivities

oo : — lq(£)|P : dplogd ;o
% Structural result: 7P (t) = dergr%%;d Iall? <0 (mm( —5 ,d p))

* Constant factor approximation to L,, regression with poly(d, p)
queries from the Chebyshev density for all p = 1, showing separation
between polynomial L), regression and matrix L,, regression, which

requires Q(dp/z) samples [LiWangWoodruff20]



Questions? Format

** Part 1: Background _ 1. Show Chebyshev density
% Part 2: Subspace Embeddings <~ are the L, sensitivities
< Part 3: Lewis Weights - 2. Show Chebyshev density

are the Lewis weights

\ 3. Uniform sampling + Lewis
weight sampling for p €
[1,2]

. Tensor trick + compact net
forp > 2

o

» Part 4: Algorithm

/

/




Lp Sensitivities

(ay,x)[P
p
lax|?

* L, sensitivites: Tl-(p) (A) = max

*» Sample each row a; with probability p; < Ti(p) (A) gives L), subspace
embedding

¢ Pros: Easy to understand, generalize, i.e., “importance sampling”

< Cons: Gives suboptimal bounds, e.g., 0(d?) samples for p € [1,2)



L, Lewis Weights

1 1

“* L, Lewis weights [CohenPengl5]: w; = Tl-(WZ PA

* Sample each row a; with probability p; o< w; gives L,, subspace
embedding

< Pros: Gives near-optimal bounds, e.g., O(d) samples for p € [1,2)

s Cons: Difficult to understand, generalize, i.e., “reweighted importance
sampling”



Properties L, Lewis Weights

L, LeW|s weights can be approximated by iteratively computing

T; W2 PA after initializing W = [,

1 1
11
X If (W pA) < C, then W is a C-approximation to the L,, Lewis

Welghts forp € [1,2]




L, Lewis Weight Fixed Point Ratio

1/2
% Goal: Show = p T(Ww(t) P) < C, where T is the leverage score
function, w(t) = \/% is the Chebyshev density, and P is the

polynomial operator

** Change of basis to Chebyshev polynomials of the second kind, which
are orthogonal under the inner product

1
f f(H)g®) V1 — t2dt
~1




1 (1) (1) 1

Figure 6: Plot of the scaled Chebyshev Measure
(—) and corresponding reweighted leverage function
T[V%_%}P](t) (—) on [—1,1] for d = 6, p = 1.
For most values of t both curves are close, but for
lt| > 1 — diﬂ the curves diverge. This means that the
Chebyshev density itself does not directly approxi-
mate the L, Lewis weights, motivating our study of
a clipped version of the measure, denoted w(t).



L, Lewis Weight Fixed Point Ratio

1/2
% Goal: Show = p T(Ww(t) P) < C, where T is the leverage score
: I A : :
function, w(t) = S the Chebyshev density, and P is the

polynomial operator

¢ NOT TRUE!

Chebyshev Measure




L, Lewis Weight Fixed Point Ratio

4

T(U_l/z P) .
o < C,where u(t) = mln(

is the clipped Chebyshev density

2
Goal: ShowC m,d )

Behavior in the “middle” of u(t) is similar to w(t)

Upper bounding the ratio in the “endcaps” from upper
bounding the numerator

Lower bounding the ratio in the “endcaps” by evaluating the
numerator for a low-degree approximation of a high-degree
polynomial



Figure 7: Plot of the clipped Chebyshev Measure
(—) and corresponding reweighted leverage function
(—) for t € [0.5,1] and d = 6, p = 1. As proven in
Theorem 2.2, these functions are within a constant
factor for all £, so we can claim that the clipped mea-
sure approximates the L, Lewis weights. We also
visualize the “spike” polynomial ¢(t) (—) and upper
bound (—) used in the proof of Theorem 2.2.



L, Lewis Weight Fixed Point Ratio

1 - t(u~1/2 p)
polylog(d) — u(t)

¢ Structural result forp = 1: < polylog(d)

(35)
T\U2 pvp

polylog(d) —  u(?)

¢ By using Jacobi polynomials instead:
polylog(d) forp € [1,2]



L, Lewis Weights Challenges

* There are no L,, known Lewis weights for operators

’0

»* ...no approximate Lewis weight theorem!



Questions? Format

** Part 1: Background _ 1. Show Chebyshev density
% Part 2: Subspace Embeddings <~ are the L, sensitivities
< Part 3: Lewis Weights - 2. Show Chebyshev density

are the Lewis weights

\ 3. Uniform sampling + Lewis
weight sampling for p €
[1,2]

. Tensor trick + compact net
forp > 2

o

» Part 4: Algorithm

/

/




Uniform Sampling

¢ Sample poly (d,p, i) points uniformly at random from [—1,1] and
form a matrix A from these points
¢ Let b be the corresponding measurements of the signal f

* |lAx = bllp = lIPx = fll, = (f_lllpx(t) — (D) dt)l/p



Uniform Sampling
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Uniform Sampling Preserves Fixed Point Ratio

o TWTV2P) (w2 4)
Tooum T wi@

< Only O (Eocil)) samples with L,, Lewis weights needed for (1+ ¢)-

approximation to L,, regression with p € [1,2] [ChenDerezinski21,
ParulekarParulekarPrice21, MuscoMuscoWoodruffYasuda22]




te[-1,1]

Subsampled

Py . Sampling: Vandermonde Sampling:
Linear Operator Uniform > Matrix T owis Wﬁighi,> Vandermonde
. Matrix
9 d (theoretical)
1t &= -t
1t 12 --- ¢4

1t % - ¢

)

—

>
> SA € RO(d)xd

>

A€ Rﬁ{d‘r’}xd

P:Rd_}LZ



(Simplified) Algorithm

1. Uniform sample n =

poly (d, D, i) points from
|—1,1] form a matrix A
from these points

2. Perform L, Lewis weight
sampling on A

3. Return approximately
optimal solution on
sketched instance

. Sample with respect to

Chebyshev density on
[—1,1]

Return approximately
optimal solution on
sketched instance




Challenges forp > 2

* Do not have structural property relating Chebyshev density with L,
Lewis weights for p > 2

« L, Lewis weights use O(dp/z) samples



L, Regression forp > 2

L, sensitivities are upper bounded by Chebyshev density

¢ Use tensoring trick of [MeyerMuscoMuscoWoodruffZhou22] to union
bound over a smaller net



(Simplified) Algorithm forp > 2

1. Uniform sample n =

poly (d, D, %) points from
|—1,1] form a matrix A
from these points

2. Perform L, sensitivity
samplingon A

3. Return approximately
optimal solution on
sketched instance

. Sample with respect to

Chebyshev density on
[—1,1]

Return approximately
optimal solution on
sketched instance




Lower Bound

X Q( . ) queries are necessary for (1 + ¢)-approximation to L,

ep—1
regression
 Letn = g and I be an interval of length % from [—1,1] so that
with probability %, no query lands in [
1 1
. . 2P . 2P
*» Define f, = —on I and O elsewhere, define f_ = ——on [ and 0
elsewhere

* llg = flly = (1= 0(0) lIfill; for q(t) = 1



Summary

. : : : : log@®) ¢ :
¢ (1 + &)-approximation to L,, regression with dp ( o) ) queries

from the Chebyshev density forallp = 1

. 1 . . :
s () (gp_l) queries are necessary for (1 + £)-approximation to L,

regression

oo . — lq(£)|P : dplogd ;o
% Structural result: 7P (¢t) = dergr%gﬁd Il <0 (mm( — ,d p))

1 - T(U%_% P)

polylog(d) —  u(t)

¢ Structural result: < polylog(d) forp € [1,2]



Summary

. : : : : log?®) g :
¢ (1 + &)-approximation to L,, regression with dp ( o) ) queries

from the Chebyshev density forallp = 1

. 1 . . :
s () (gp_l) queries are necessary for (1 + £)-approximation to L,

regression

** Question: Other loss functions?

** Question: Sparse Fourier regression [ChenKanePriceSong16,
AvronKapralovMuscoMuscoVelingkerZandieh19]



' Markov Brothers’

./ Bernstein

Matrix Lewis weights

/ leverage scores

L, Sensitivity
Bounds, p > 1

Uniform Sampling

(two stage)

Orthogonal polynomials
(Chebyshev / Jacobi)

Compact

—

Approximate Lewis
Weight Bounds, p € [1, 2]

(1 + &)-approximation,

Rounding

p > 2 (one stage)

(1 4 &)-approximation,

p € [1,2] (one stage)
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