Near-Linear Sample Complexity for L_{p} Polynomial Regression

Raphael A. Meyer
Cameron Musco
Christopher Musco
David P. Woodruff
Samson Zhou

Over 50\% People CAN'T Solve This!!

What comes next?

Over 50\% People CAN'T Solve This!!

What comes next?

Over 50\% People CAN'T Solve This!!

What comes next?

Over 50\% People CAN'T Solve This!!

What comes next?

Over 50\% People CAN'T Solve This!!

What comes next?

Over 50\% People CAN'T Solve This!!

What comes next?

Polynomial Fitting

* Given $q\left(t_{1}\right), \ldots, q\left(t_{m}\right)$, recover the polynomial $q(x)$
* For a degree d polynomial $q(x)$, must have $m \geq d+1$ samples to recover $q(x)$

Polynomial Fitting

$$
\begin{gathered}
q(x)=a_{d} x^{d}+\cdots+a_{1} x+a_{0} \\
\\
q\left(t_{1}\right)=a_{d} t_{1}^{d}+\cdots+a_{1} t_{1}+a_{0} \\
q\left(t_{2}\right)=a_{d} t_{2}^{d}+\cdots+a_{1} t_{2}+a_{0} \\
\vdots \\
q\left(t_{m}\right)=a_{d} t_{m}^{d}+\cdots+a_{1} t_{m}+a_{0}
\end{gathered}
$$

Polynomial Fitting

* For $m \geq d+1$, any choice of distinct t_{1}, \ldots, t_{m} can recover $q(x)$
* Solve the linear system, Lagrangian interpolation, etc.

Polynomial Regression

* For a signal f, recover the degree d polynomial $q(x)$ that is the "best fit" to f
*What does best fit mean?

Polynomial Regression

* $\|f-q\|_{p}=\left(\int_{-1}^{1}|f(t)-q(t)|^{p} d t\right)^{1 / p}$
* $\|f-q\|_{\infty}=\max _{t \in[-1,1]}|f(t)-q(t)|$
* Polynomial regression: Given $\varepsilon>0$ and $p \in[1, \infty]$, output $\widehat{q(t)}$ such that

$$
\|f-\hat{q}\|_{p} \leq(1+\varepsilon)\left(\min _{\operatorname{deg}(q) \leq d}\|f-q\|_{p}\right)
$$

Polynomial Regression

$\boldsymbol{*}\|f-q\|_{p}=\left(\int_{-1}^{1}|f(t)-q(t)|^{p} d t\right)^{1 / p}$

* $\|f-q\|_{\infty}=\max _{t \in[-1,1]}|f(t)-q(t)|$

Sample Complexity

* Sample complexity: Number m of locations t_{1}, \ldots, t_{m} at which the signal f is read
* Sample complexity of polynomial fitting is $m=d+1$

What is the sample complexity of polynomial regression?

Deterministic Algorithms Do Not Work

Deterministic Algorithms Do Not Work

Previous Work for L_{2} Regression

* $(1+\varepsilon)$-approximation to L_{2} regression with $O\left(\frac{d \log d}{\varepsilon}\right)$ queries [RauhutWard12, CohenDavenportLeviatan13, CohenMigliorati13]
* (1 $+\varepsilon$)-approximation to L_{2} regression with $O\left(\frac{d}{\varepsilon}\right)$ queries [ChenPrice19]

Previous Work for L_{∞} Regression

* $O(\log d)$-approximation to L_{∞} regression with $O(d \log d)$ queries [Trefethen12]
* Constant factor approximation to L_{∞} regression with $O(d \log d)$ queries [KaneKarmalkarPrice17]

Our Results (I)

* $(1+\varepsilon)$-approximation to L_{p} regression with $d p\left(\frac{\log ^{O(p)} d}{\varepsilon^{O(p)}}\right)$ queries from the Chebyshev density for all $p \geq 1$
* Upper bound shows separation in the degree d between polynomial L_{p} regression and matrix L_{p} regression, which requires $\Omega\left(d^{p / 2}\right)$ samples [LiWangWoodruff20]

Our Results (II)

* $\Omega\left(\frac{1}{\varepsilon^{p-1}}\right)$ queries are necessary for $(1+\varepsilon)$-approximation to L_{p} regression
* Proof recovers a result by [KaneKarmalkarPrice17] showing impossibility of $(2-\varepsilon)$-approximation to L_{∞} regression

Approach	Sample Complexity	Approximation
L_{p} sensitivity sampling ([MMWY21] + Theorem 5.3)	$d^{2} p\left(\frac{\log d}{\varepsilon}\right)^{O(1)}$	$(1+\varepsilon)$
L_{p} sensitivity + Lewis weight sampling [MMWY21]	$d^{\max (1, p / 2)}\left(\frac{\log d}{\varepsilon}\right)^{O(1)}$	$(1+\varepsilon)$
L_{1} Lewis weight sampling [MMM $\left.{ }^{+} 22\right]$	$d p \log d$	$O(1)$
Chebyshev measure sampling for all $p \geq 1$ (our results)	$d p\left(\frac{\log d}{\varepsilon}\right)^{O(p)}$	$(1+\varepsilon)$

Algorithm

1. Sample with respect to Chebyshev density on [-1,1]
2. Return approximately optimal solution on sketched instance

Questions?

Format

* Part 1: Background

Part 2: Subspace Embeddings
Part 3: Lewis Weights
Part 4: Algorithm
mbeddings

1. Show Chebyshev density are the L_{p} sensitivities
2. Show Chebyshev density are the Lewis weights
3. Uniform sampling + Lewis weight sampling for $p \in$ [1,2]
4. Tensor trick + compact net for $p>2$

Subspace Embedding

* Subspace embedding: Given $\varepsilon>0$ and $A \in$ $R^{n \times d}$, find matrix $T \in R^{m \times d}$ with $m \ll n$, such that for every $x \in R^{d}$,

$$
(1-\varepsilon)\|A x\|_{p} \leq\|T x\|_{p} \leq(1+\varepsilon)\|A x\|_{p}
$$

Subspace Embedding

* If the rows of A are "roughly" uniform, could uniformly sample a small number of rows of A and rescale them to form subspace embedding T

Leverage Scores

* Intuition: how "important" a row is (importance sampling)
* $\tau_{i}(A)=\max \frac{\left\langle a_{i}, x\right\rangle^{2}}{\|A x\|_{2}^{2}}$ are the leverage scores of A (in this case of row a_{i})
$\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$
$\boldsymbol{*} \tau_{i}(A)=\max \frac{\left\langle a_{i}, x\right\rangle^{2}}{\|A x\|_{2}^{2}}=\max \frac{\left\langle a_{i}, x\right\rangle^{2}}{\sum_{i=1}^{n}\left|a_{i}, x\right\rangle^{2}} \leq 1$

Leverage Scores

* $\tau_{i}(A)=\max \frac{\left\langle a_{i}, x\right\rangle^{2}}{\|A x\|_{2}^{2}}=\max \frac{\left\langle a_{i}, x\right\rangle^{2}}{\sum_{i=1}^{n}\left(a_{i}, x\right\rangle^{2}}$
* For $x=(1-1)$:

$$
\begin{array}{ll}
\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\binom{1}{-1} \quad \begin{array}{l}
\left\langle a_{1}, x\right\rangle^{2}=(1+0)^{2}=1 \text { and }\left\langle a_{2}, x\right\rangle^{2}= \\
(1-1)^{2}=0 \\
\end{array} \frac{\left\langle a_{1}, x\right\rangle^{2}}{\left\langle a_{1}, x\right\rangle^{2}+\left\langle a_{2}, x\right\rangle^{2}}=\frac{1}{1}=1, \text { so } \tau_{1}=1
\end{array}
$$

Leverage Scores

* $\tau_{i}(A)=\max \frac{\left\langle a_{i}, x\right\rangle^{2}}{\|A x\|_{2}^{2}}=\max \frac{\left\langle a_{i}, x\right\rangle^{2}}{\sum_{i=1}^{n}\left(a_{i}, x\right\rangle^{2}}$
* For $x=(1-1)$:

$$
\begin{array}{ll}
\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{r}
1 \\
-1
\end{array}\right] \quad & \left\langle a_{1}, x\right\rangle^{2}=(1+0)^{2}=1 \text { and }\left\langle a_{2}, x\right\rangle^{2}= \\
& (1-1)^{2}=0 \\
\left\langle a_{1}, x\right\rangle^{2}+\left\langle a_{2}, x\right\rangle^{2} & =\frac{0}{1}=0
\end{array}
$$

Leverage Scores

$\not \tau_{i}(A)=\max \frac{\left\langle a_{i}, x\right\rangle^{2}}{\|A x\|_{2}^{2}}=\max \frac{\left\langle a_{i}, x\right\rangle^{2}}{\sum_{i=1}^{n}\left\langle a_{i}, x\right\rangle^{2}}$

* For $x=\left(\begin{array}{ll}0 & 1\end{array}\right)$:
$\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)\binom{0}{1}$
* $\left\langle a_{1}, x\right\rangle^{2}=(0+0)^{2}=0$ and $\left\langle a_{2}, x\right\rangle^{2}=$ $(0+1)^{2}=1$
* $\frac{\left\langle a_{2}, x\right\rangle^{2}}{\left\langle a_{1}, x\right\rangle^{2}+\left\langle a_{2}, x\right\rangle^{2}}=\frac{1}{1}=1$, so $\tau_{2}=1$

Leverage Scores

* $\tau_{i}(A)=\max \frac{\left\langle a_{i}, x\right\rangle^{2}}{\|A x\|_{2}^{2}}=\max \frac{\left\langle a_{i}, x\right\rangle^{2}}{\sum_{i=1}^{n}\left(a_{i}, x\right\rangle^{2}}$
* For $x=\left(\begin{array}{ll}1 & 0\end{array}\right)$:
$\left(\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1\end{array}\right)\binom{1}{0} \quad \frac{\left\langle a_{1}, x\right\rangle^{2}}{\sum_{i=1}^{n}\left\langle a_{i}, x\right\rangle^{2}}=\frac{1}{5}$ and in fact $\tau_{1}=\frac{1}{5}$

Leverage Scores

* Intuition: how "important" a row is (importance sampling)
* $\tau_{i}(A)=\max \frac{\left\langle a_{i}, x\right\rangle^{2}}{\|A x\|_{2}^{2}}$ are the leverage scores of A (in this case of row a_{i})
$\left[\begin{array}{lll}1 & --7 \\ 1 & 1 \\ 1 & -\end{array}\right]$
* Take $x=(1-1)$ to see that $\tau_{1}=1$
* Take $x=\left(\begin{array}{ll}0 & 1\end{array}\right)$ to see that $\tau_{2}=1$
\& $\tau_{i}(A)=a_{i}\left(A^{\top} A\right)^{-1} a_{i}^{\top}, \quad \sum \tau_{i}=d$

Leverage Scores

* Leverage score sampling: Sample $O\left(\frac{d \log d}{\varepsilon^{2}}\right)$ rows of A with probability proportional to leverage score $\tau_{i}(A)=\max \frac{\left\langle a_{i}, x\right\rangle^{2}}{\|A x\|_{2}^{2}}$
* Rescale sampled rows to form subspace embedding T

$$
(1-\varepsilon)\|A x\|_{2} \leq\|T x\|_{2} \leq(1+\varepsilon)\|A x\|_{2}
$$

Linear Regression

Find the vector x that minimizes
$\|A x-b\|_{2}$

* "Least squares" optimization
* Find a vector \hat{x} with $\|A \hat{x}-b\|_{2} \leq$ $(1+\varepsilon)\left(\min \|A x-b\|_{2}\right)$

Linear Regression

* If $B=[A ; b]$ and $y=[x ;-1]$, then $A x-b=B y$

Linear Regression

$*$ If $B=[A ; b]$ and $y=[x ;-1]$, then $A x-b=B y$

* If "free" access to all entries of $B=[A ; b]$, suffices to find a subspace embedding for B and then minimize $\|B y\|_{2}$

Linear Regression to Polynomial Regression

Linear Regression to Polynomial Regression

L_{2} Polynomial Regression

* Leverage score for matrices: $\tau_{i}=\max \frac{\left\langle a_{i}, x\right\rangle^{2}}{\|A x\|_{2}^{2}}$
* Leverage function for operators: $\tau(t)=\max _{\operatorname{deg}(q) \leq d} \frac{|q(t)|^{2}}{\|q\|_{2}^{2}}$
* Can show $\tau(t) \leq O\left(\frac{d}{\sqrt{1-t^{2}}}\right)$, so roughly $O\left(\frac{d \log ^{2} d}{\varepsilon^{2}}\right)$ samples from the Chebyshev density suffice

Toward General p

* Analog of leverage score for general p?
* Previous L_{2} leverage scores: $\tau_{i}(A)=\max \frac{\left(a_{i}, x\right)^{2}}{\|A x\|_{2}^{2}}$

L_{p} Sensitivities

* L_{p} sensitivites: $\tau_{i}^{(p)}(A)=\max \frac{\left|\left\langle a_{i}, x\right\rangle\right|^{p}}{\|A x\|_{p}^{p}}$
* Sample each row a_{i} with probability $p_{i} \propto \tau_{i}^{(p)}(A)$ gives L_{p} subspace embedding
* Pros: Easy to understand, generalize, i.e., "importance sampling"
* Cons: Gives suboptimal bounds, e.g., $\tilde{O}\left(d^{2}\right)$ samples for $p \in[1,2)$

L_{p} Sensitivities

* L_{p} sensitivities for matrices: $\tau_{i}^{(p)}(A)=\max \frac{\left|\left\langle a_{i}, x\right\rangle\right|^{p}}{\|A x\|_{p}^{p}}$
* L_{p} sensitivities for operators: $\tau^{(p)}(t)=\max _{\operatorname{deg}(q) \leq d} \frac{|q(t)|^{p}}{\|q\|_{p}^{p}}$
* Want to bound $\tau^{(p)}(t)$

Upper Bound for L_{p} Sensitivities

* Structural result: $\tau^{(p)}(t)=\max _{\operatorname{deg}(q) \leq d} \frac{|q(t)|^{p}}{\|q\|_{p}^{p}} \leq O\left(\min \left(\frac{d p \log d}{\sqrt{1-t^{2}}}, d^{2} p\right)\right)$
* Normalize $q(t)=1$, how small can $\|q\|_{p}^{p}$ be?

Upper Bound for L_{p} Sensitivities

* Bernstein's inequality: If q is a polynomial with degree d and $|q(t)| \leq$ 1 for $t \in[-1,1]$, then $\left|q^{\prime}(t)\right| \leq \frac{d}{\sqrt{1-t^{2}}}$ for all $t \in[-1,1]$
* Markov brothers' inequality: If q is a polynomial with degree d and $|q(t)| \leq 1$ for $t \in[-1,1]$, then $\left|q^{\prime}(t)\right| \leq d^{2}$ for all $t \in[-1,1]$

L_{p} Sensitivities

* If $|q|$ achieves maximum at t, then $\|q\|_{p}^{p} \geq \Omega\left(\max \left(\frac{\sqrt{1-t^{2}}}{d p}, \frac{1}{d^{2} p}\right)\right)$
* Otherwise, show there exists a degree $O(d \log d)$ polynomial r that achieves maximum "near" t and $\left|\|r\|_{p}^{p}-\|q\|_{p}^{p}\right| \leq \frac{1}{d^{3}}$

L_{p} Sensitivities

* Structural result: $\tau^{(p)}(t)=\max _{\operatorname{deg}(q) \leq d} \frac{|q(t)|^{p}}{\|q\|_{p}^{p}} \leq O\left(\min \left(\frac{d p \log d}{\sqrt{1-t^{2}}}, d^{2} p\right)\right)$
* Constant factor approximation to L_{p} regression with poly (d, p) queries from the Chebyshev density for all $p \geq 1$, showing separation between polynomial L_{p} regression and matrix L_{p} regression, which requires $\Omega\left(d^{p / 2}\right)$ samples [LiWangWoodruff20]

Questions?

Format

* Part 1: Background

Part 2: Subspace Embeddings
Part 3: Lewis Weights
Part 4: Algorithm
mbeddings

1. Show Chebyshev density are the L_{p} sensitivities
2. Show Chebyshev density are the Lewis weights
3. Uniform sampling + Lewis weight sampling for $p \in$ [1,2]
4. Tensor trick + compact net for $p>2$

L_{p} Sensitivities

* L_{p} sensitivites: $\tau_{i}^{(p)}(A)=\max \frac{\left|\left\langle a_{i}, x\right\rangle\right|^{p}}{\|A x\|_{p}^{p}}$
* Sample each row a_{i} with probability $p_{i} \propto \tau_{i}^{(p)}(A)$ gives L_{p} subspace embedding
* Pros: Easy to understand, generalize, i.e., "importance sampling"
* Cons: Gives suboptimal bounds, e.g., $\tilde{O}\left(d^{2}\right)$ samples for $p \in[1,2)$

L_{p} Lewis Weights

* L_{p} Lewis weights [CohenPeng15]: $w_{i}=\tau_{i}\left(w^{\frac{1}{2}-\frac{1}{p}} A\right)$
* Sample each row a_{i} with probability $p_{i} \propto w_{i}$ gives L_{p} subspace embedding
* Pros: Gives near-optimal bounds, e.g., $\tilde{O}(d)$ samples for $p \in[1,2)$
* Cons: Difficult to understand, generalize, i.e., "reweighted importance sampling"

Properties L_{p} Lewis Weights

* L_{p} Lewis weights can be approximated by iteratively computing $\tau_{i}\left(W^{\frac{1}{2}-\frac{1}{p}} A\right)$ after initializing $W=I_{n}$
* If $\left.\frac{1}{C} \leq \frac{\tau_{i}\left(W^{\frac{1}{2}-\frac{1}{p}}\right.}{w_{A}}\right) \leq C$, then W is a C-approximation to the L_{p} Lewis weights, for $p \in[1,2]$

L_{1} Lewis Weight Fixed Point Ratio

* Goal: Show $\frac{1}{C} \leq \frac{\tau\left(W^{-1 / 2} P\right)}{w_{d}(t)} \leq C$, where τ is the leverage score function, $w(t)=\frac{d}{\sqrt{1-t^{2}}}$ is the Chebyshev density, and P is the polynomial operator
* Change of basis to Chebyshev polynomials of the second kind, which are orthogonal under the inner product

$$
\int_{-1}^{1} f(t) g(t) \sqrt{1-t^{2}} d t
$$

Figure 6: Plot of the scaled Chebyshev Measure (一) and corresponding reweighted leverage function $\tau\left[\mathcal{V}^{\frac{1}{2}-\frac{1}{p}} \mathcal{P}\right](t)(-)$ on $[-1,1]$ for $d=6, p=1$. For most values of t both curves are close, but for $|t|>1-\frac{1}{d^{2}}$ the curves diverge. This means that the Chebyshev density itself does not directly approximate the L_{p} Lewis weights, motivating our study of a clipped version of the measure, denoted $w(t)$.

L_{1} Lewis Weight Fixed Point Ratio

* Goal: Show $\frac{1}{C} \leq \frac{\tau\left(W^{-1 / 2} P\right)}{w^{(t)}} \leq C$, where τ is the leverage score function, $w(t)=\frac{d}{\sqrt{1-t^{2}}}$ is the Chebyshev density, and P is the polynomial operator
* NOT TRUE!

L_{1} Lewis Weight Fixed Point Ratio

* Goal: Show $\frac{1}{C} \leq \frac{\tau\left(U^{-1 / 2} P\right)}{u(t)} \leq C$, where $u(t)=\min \left(\frac{d}{\sqrt{1-t^{2}}}, d^{2}\right)$ is the clipped Chebyshev density
* Behavior in the "middle" of $u(t)$ is similar to $w(t)$
* Upper bounding the ratio in the "endcaps" from upper bounding the numerator
* Lower bounding the ratio in the "endcaps" by evaluating the numerator for a low-degree approximation of a high-degree polynomial

Figure 7: Plot of the clipped Chebyshev Measure (一) and corresponding reweighted leverage function (一) for $t \in[0.5,1]$ and $d=6, p=1$. As proven in Theorem 2.2, these functions are within a constant factor for all t, so we can claim that the clipped measure approximates the L_{p} Lewis weights. We also visualize the "spike" polynomial $q(t)(-)$ and upper bound (-) used in the proof of Theorem 2.2.

L_{p} Lewis Weight Fixed Point Ratio

* Structural result for $p=1: \frac{1}{\operatorname{polylog}(d)} \leq \frac{\tau\left(U^{-1 / 2} P\right)}{u(t)} \leq \operatorname{polylog}(d)$
* By using Jacobi polynomials instead: $\frac{1}{\text { polylog(d) }} \leq \frac{\tau\left(U^{{ }^{\frac{1}{2}-\frac{1}{p}}}\right)}{u(t)} \leq$ polylog (d) for $p \in[1,2]$

L_{p} Lewis Weights Challenges

* There are no L_{p} known Lewis weights for operators
* ...no approximate Lewis weight theorem!

Questions?

Format

* Part 1: Background

Part 2: Subspace Embeddings
Part 3: Lewis Weights
Part 4: Algorithm
mbeddings

1. Show Chebyshev density are the L_{p} sensitivities
2. Show Chebyshev density are the Lewis weights
3. Uniform sampling + Lewis weight sampling for $p \in$ [1,2]
4. Tensor trick + compact net for $p>2$

Uniform Sampling

* Sample poly $\left(d, p, \frac{1}{\varepsilon}\right)$ points uniformly at random from $[-1,1]$ and form a matrix A from these points
* Let b be the corresponding measurements of the signal f

$$
\|A x-b\|_{p} \approx\|P x-f\|_{p}=\left(\int_{-1}^{1}|P x(t)-f(t)|^{p} d t\right)^{1 / p}
$$

Uniform Sampling

Uniform Sampling Preserves Fixed Point Ratio

* $\frac{\tau\left(U^{-1 / 2} P\right)}{u(t)} \approx \frac{\tau\left(W^{-1 / 2} A\right)}{w_{i}(A)}$
* Only $\tilde{O}\left(\frac{d}{\varepsilon^{O(1)}}\right)$ samples with L_{p} Lewis weights needed for $(1+\varepsilon)$ approximation to L_{p} regression with $p \in[1,2]$ [ChenDerezinski21, ParulekarParulekarPrice21, MuscoMuscoWoodruffYasuda22]

(Simplified) Algorithm

1. Uniform sample $n=$ poly ($d, p, \frac{1}{\varepsilon}$) points from
$[-1,1]$ form a matrix A from these points
2. Perform L_{p} Lewis weight sampling on A
3. Return approximately optimal solution on sketched instance
4. Sample with respect to Chebyshev density on [-1,1]
5. Return approximately optimal solution on sketched instance

Challenges for $p>2$

* Do not have structural property relating Chebyshev density with L_{p} Lewis weights for $p>2$
* L_{p} Lewis weights use $O\left(d^{p / 2}\right)$ samples

L_{p} Regression for $p>2$

* L_{p} sensitivities are upper bounded by Chebyshev density
* Use tensoring trick of [MeyerMuscoMuscoWoodruffZhou22] to union bound over a smaller net

(Simplified) Algorithm for $p>2$

1. Uniform sample $n=$ poly ($d, p, \frac{1}{\varepsilon}$) points from
$[-1,1]$ form a matrix A from these points
2. Perform L_{p} sensitivity sampling on A
3. Return approximately optimal solution on sketched instance
4. Sample with respect to Chebyshev density on [-1,1]
5. Return approximately optimal solution on sketched instance

Lower Bound

* $\Omega\left(\frac{1}{\varepsilon^{p-1}}\right)$ queries are necessary for $(1+\varepsilon)$-approximation to L_{p} regression
* Let $n=\frac{1}{\varepsilon^{p-1}}$ and I be an interval of length $\frac{n}{100}$ from $[-1,1]$ so that with probability $\frac{2}{3}$, no query lands in I
* Define $f_{+}=\frac{2^{\frac{1}{p}}}{\varepsilon}$ on I and 0 elsewhere, define $f_{-}=-\frac{2^{\frac{1}{p}}}{\varepsilon}$ on I and 0 elsewhere
$\nLeftarrow\left\|-f_{+}\right\|_{p}^{p}=(1-O(\varepsilon))\left\|f_{+}\right\|_{p}^{p}$ for $q(t)=1$

Summary

* $(1+\varepsilon)$-approximation to L_{p} regression with $d p\left(\frac{\log ^{O(p)} d}{\varepsilon^{O(p)}}\right)$ queries from the Chebyshev density for all $p \geq 1$
* $\Omega\left(\frac{1}{\varepsilon^{p-1}}\right)$ queries are necessary for $(1+\varepsilon)$-approximation to L_{p} regression
- Structural result: $\tau^{(p)}(t)=\max _{\operatorname{deg}(q) \leq d} \frac{|q(t)|^{p}}{\|q\|_{p}^{p}} \leq O\left(\min \left(\frac{d p \log d}{\sqrt{1-t^{2}}}, d^{2} p\right)\right)$
* Structural result: $\frac{1}{\operatorname{polylog}(d)} \leq \frac{\tau\left(U^{\frac{1}{2}-\frac{1}{p}}{ }_{P}\right)}{u(t)} \leq \operatorname{polylog}(d)$ for $p \in[1,2]$

Summary

* $(1+\varepsilon)$-approximation to L_{p} regression with $d p\left(\frac{\log ^{O(p)} d}{\varepsilon^{O(p)}}\right)$ queries from the Chebyshev density for all $p \geq 1$
* $\Omega\left(\frac{1}{\varepsilon^{p-1}}\right)$ queries are necessary for $(1+\varepsilon)$-approximation to L_{p} regression
* Question: Other loss functions?
* Question: Sparse Fourier regression [ChenKanePriceSong16, AvronKapralovMuscoMuscoVelingkerZandieh19]

