Near-Linear Sample Complexity for L_p Polynomial Regression

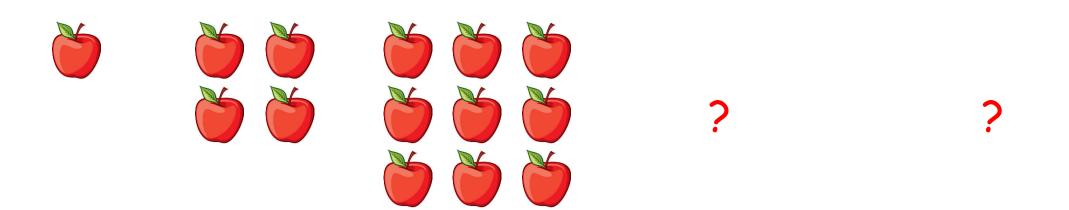
Raphael A. Meyer

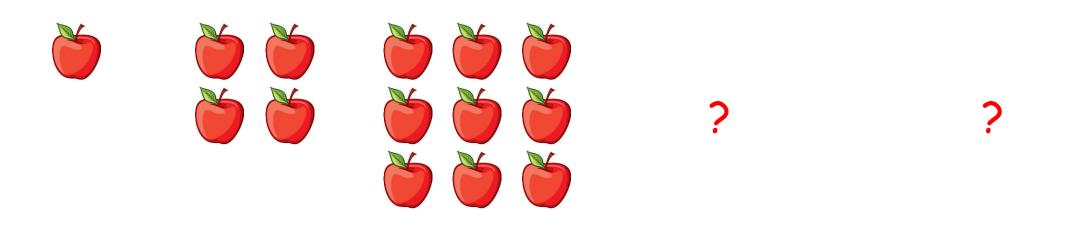
Cameron Musco

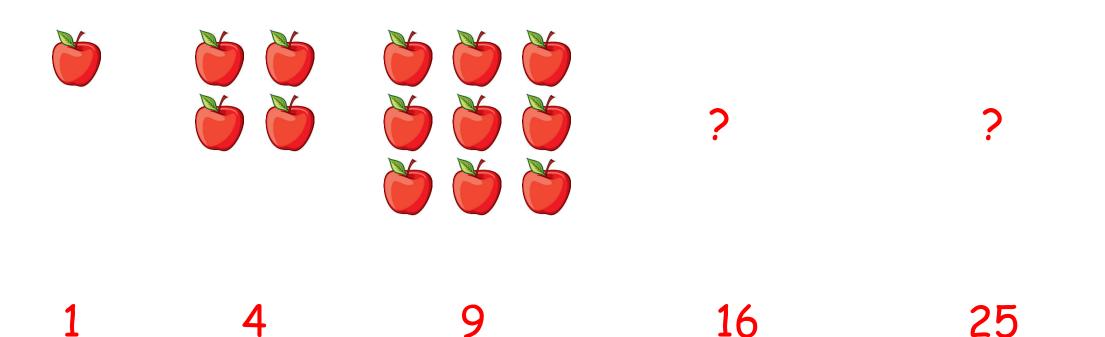
Christopher Musco

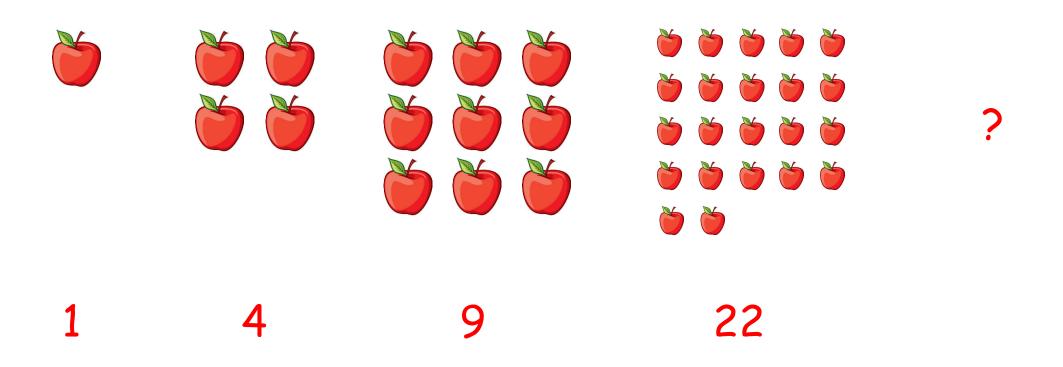
David P. Woodruff

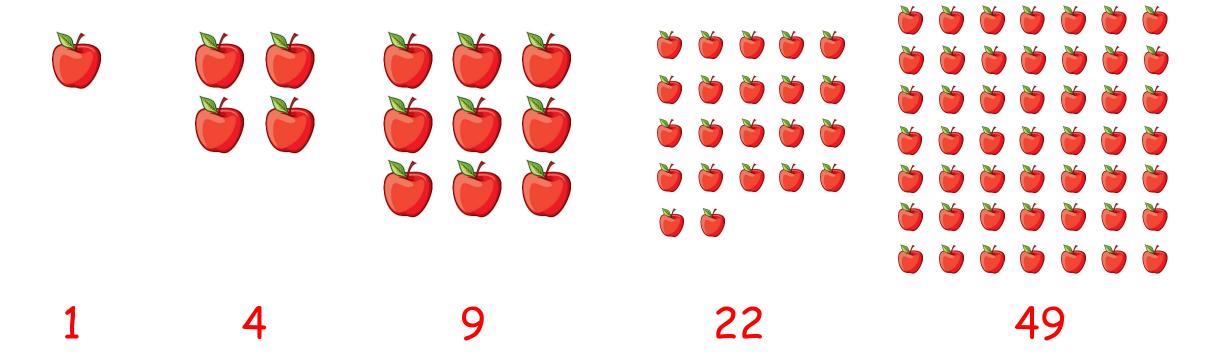
Samson Zhou

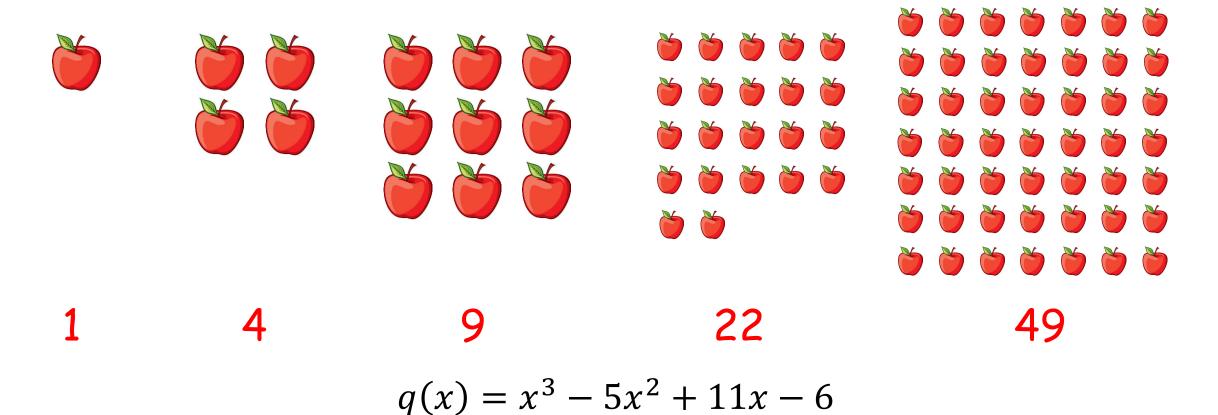












Polynomial Fitting

 \Leftrightarrow Given $q(t_1), ..., q(t_m)$, recover the polynomial q(x)

For a degree d polynomial q(x), must have $m \ge d+1$ samples to recover q(x)

Polynomial Fitting

$$q(x) = a_d x^d + \dots + a_1 x + a_0$$

$$q(t_1) = a_d t_1^d + \dots + a_1 t_1 + a_0$$

$$q(t_2) = a_d t_2^d + \dots + a_1 t_2 + a_0$$

$$\vdots$$

$$q(t_m) = a_d t_m^d + \dots + a_1 t_m + a_0$$

Polynomial Fitting

 \Leftrightarrow For $m \ge d+1$, any choice of distinct $t_1, ..., t_m$ can recover q(x)

Solve the linear system, Lagrangian interpolation, etc.

Polynomial Regression

For a signal f, recover the degree d polynomial q(x) that is the "best fit" to f

What does best fit mean?

Polynomial Regression

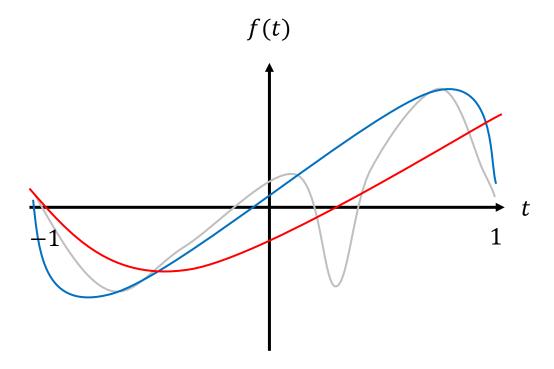
❖ Polynomial regression: Given $\varepsilon > 0$ and $p \in [1, \infty]$, output $\widehat{q(t)}$ such that

$$||f - \hat{q}||_p \le (1 + \varepsilon) \left(\min_{\deg(q) \le d} ||f - q||_p \right)$$

Polynomial Regression

$$||f - q||_p = \left(\int_{-1}^1 |f(t) - q(t)|^p \, dt \right)^{1/p}$$

$$||f - q||_{\infty} = \max_{t \in [-1,1]} |f(t) - q(t)|$$



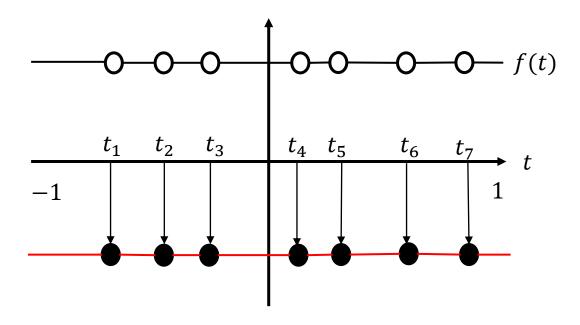
Sample Complexity

 \clubsuit Sample complexity: Number m of locations t_1, \dots, t_m at which the signal f is read

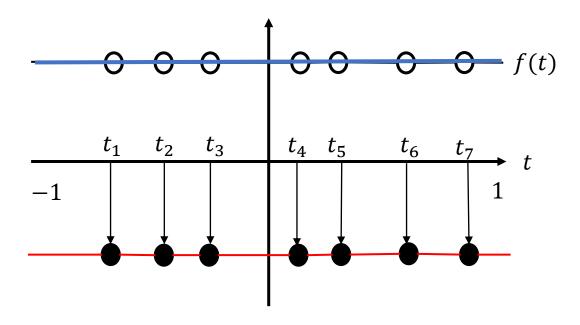
• Sample complexity of polynomial fitting is m = d + 1

What is the sample complexity of polynomial regression?

Deterministic Algorithms Do Not Work



Deterministic Algorithms Do Not Work



Previous Work for L_2 Regression

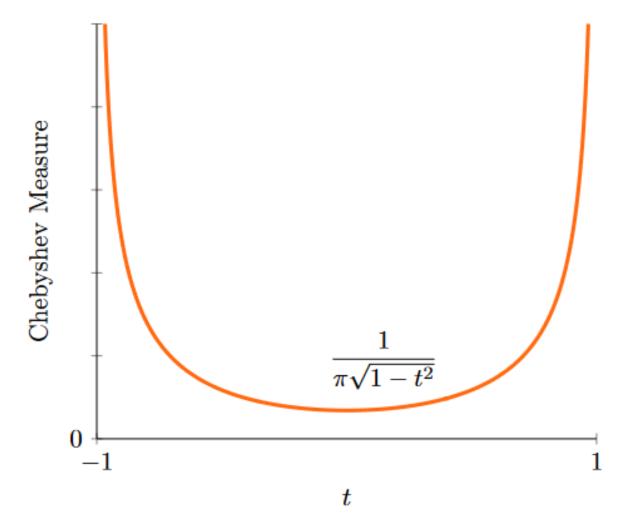
 $(1+\varepsilon)$ -approximation to L_2 regression with $O\left(\frac{d \log d}{\varepsilon}\right)$ queries [RauhutWard12, CohenDavenportLeviatan13, CohenMigliorati13]

 $(1+\varepsilon)$ -approximation to L_2 regression with $O\left(\frac{d}{\varepsilon}\right)$ queries [ChenPrice19]

Previous Work for L_{∞} Regression

•• $O(\log d)$ -approximation to L_{∞} regression with $O(d \log d)$ queries [Trefethen12]

Arr Constant factor approximation to L_{∞} regression with $O(d \log d)$ queries [KaneKarmalkarPrice17]



Our Results (I)

 $(1+\varepsilon)$ -approximation to L_p regression with $dp\left(\frac{\log^{O(p)}d}{\varepsilon^{O(p)}}\right)$ queries from the Chebyshev density for all $p\geq 1$

 \clubsuit Upper bound shows separation in the degree d between polynomial L_p regression and matrix L_p regression, which requires $\Omega(d^{p/2})$ samples [LiWangWoodruff20]

Our Results (II)

 $\Omega\left(\frac{1}{\varepsilon^{p-1}}\right)$ queries are necessary for $(1+\varepsilon)$ -approximation to L_p regression

 \red Proof recovers a result by [KaneKarmalkarPrice17] showing impossibility of $(2-\varepsilon)$ -approximation to L_{∞} regression

Approach	Sample Complexity	Approximation
L_p sensitivity sampling ([MMWY21] + Theorem 5.3)	$d^2p \left(\frac{\log d}{\varepsilon}\right)^{O(1)}$	$(1+\varepsilon)$
L_p sensitivity + Lewis weight sampling [MMWY21]	$d^{\max(1,p/2)} \left(\frac{\log d}{\varepsilon}\right)^{O(1)}$	$(1+\varepsilon)$
L_1 Lewis weight sampling [MMM ⁺ 22]	$dp \log d$	O(1)
Chebyshev measure sampling for all $p \ge 1$ (our results)	$dp \left(\frac{\log d}{\varepsilon}\right)^{O(p)}$	$(1+\varepsilon)$

Algorithm

Sample with respect to Chebyshev density on [-1,1]

2. Return approximately optimal solution on sketched instance

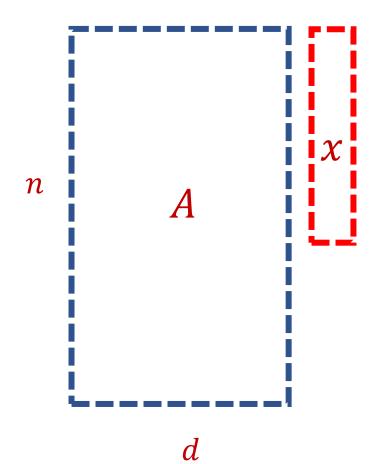
Questions?

- ❖ Part 1: Background
- Part 2: Subspace Embeddings
- ❖ Part 3: Lewis Weights
- Part 4: Algorithm

Format

- 1. Show Chebyshev density are the L_p sensitivities
- 2. Show Chebyshev density are the Lewis weights
- 3. Uniform sampling + Lewis weight sampling for $p \in [1,2]$
- 4. Tensor trick + compact net for p > 2

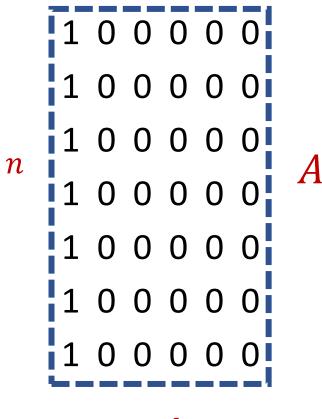
Subspace Embedding



Subspace embedding: Given $\varepsilon > 0$ and $A \in R^{n \times d}$, find matrix $T \in R^{m \times d}$ with $m \ll n$, such that for every $x \in R^d$,

$$(1 - \varepsilon) ||Ax||_p \le ||Tx||_p \le (1 + \varepsilon) ||Ax||_p$$

Subspace Embedding



❖ If the rows of A are "roughly" uniform, could uniformly sample a small number of rows of A and rescale them to form subspace embedding T

d

- Intuition: how "important" a row is (importance sampling)
- $\star \tau_i(A) = \max \frac{\langle a_i, x \rangle^2}{\|Ax\|_2^2}$ are the *leverage scores* of A (in this case of row a_i)

❖ For x = (1 - 1):

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\frac{\langle a_1, x \rangle^2}{\langle a_1, x \rangle^2 + \langle a_2, x \rangle^2} = \frac{1}{1} = 1, \text{ so } \tau_1 = 1$$

❖ For x = (1 - 1):

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\frac{\langle a_2, x \rangle^2}{\langle a_1, x \rangle^2 + \langle a_2, x \rangle^2} = \frac{0}{1} = 0$$

- $\star \tau_i(A) = \max \frac{\langle a_i, x \rangle^2}{\|Ax\|_2^2} = \max \frac{\langle a_i, x \rangle^2}{\sum_{i=1}^n \langle a_i, x \rangle^2}$
- **•** For $x = (0 \ 1)$:

$$\begin{pmatrix}
1 & 0 \\
1 & 1
\end{pmatrix}
\begin{pmatrix}
0 \\
1
\end{pmatrix}$$

$$\frac{\langle a_2, x \rangle^2}{\langle a_1, x \rangle^2 + \langle a_2, x \rangle^2} = \frac{1}{1} = 1, \text{ so } \tau_2 = 1$$

```
\star \tau_i(A) = \max \frac{\langle a_i, x \rangle^2}{\|Ax\|_2^2} = \max \frac{\langle a_i, x \rangle^2}{\sum_{i=1}^n \langle a_i, x \rangle^2}
```

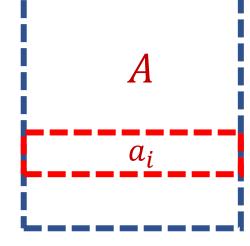
rightharpoonup For $x = (1 \ 0)$:

$$\begin{array}{c} 1 & 0 \\ 1 & 0$$

$$\frac{\langle a_1, x \rangle^2}{\sum_{i=1}^n \langle a_i, x \rangle^2} = \frac{1}{5} \text{ and in fact } \tau_1 = \frac{1}{5}$$

- Intuition: how "important" a row is (importance sampling)
- $\star \tau_i(A) = \max \frac{\langle a_i, x \rangle^2}{\|Ax\|_2^2}$ are the *leverage scores* of A (in this case of row a_i)

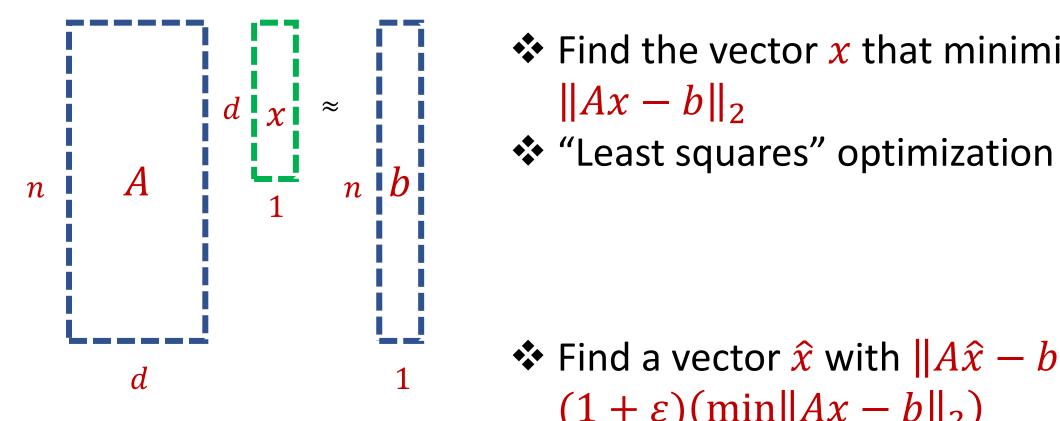
- Take x = (1 1) to see that $\tau_1 = 1$
- ightharpoonup Take $x = (0 \ 1)$ to see that $\tau_2 = 1$



- Leverage score sampling: Sample $O\left(\frac{d \log d}{\varepsilon^2}\right)$ rows of A with probability proportional to leverage score $\tau_i(A) = \max \frac{\langle a_i, x \rangle^2}{\|Ax\|_2^2}$
- \diamond Rescale sampled rows to form subspace embedding T

$$(1 - \varepsilon) ||Ax||_2 \le ||Tx||_2 \le (1 + \varepsilon) ||Ax||_2$$

Linear Regression

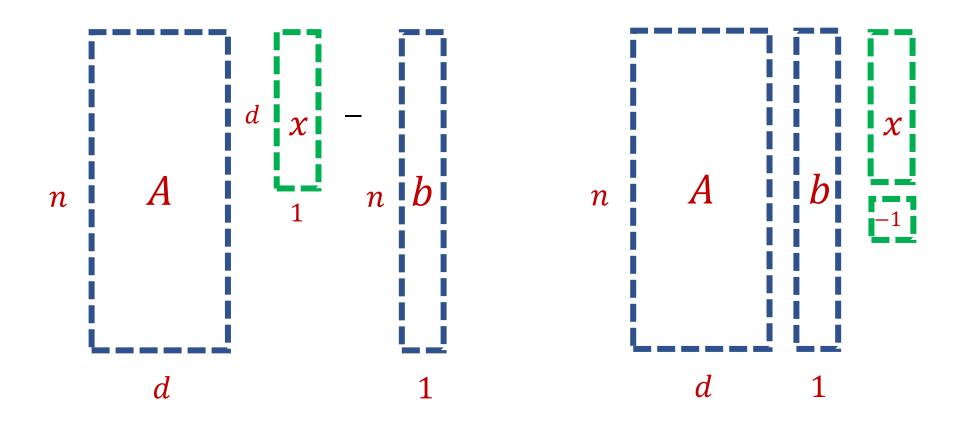


- \clubsuit Find the vector \mathbf{x} that minimizes

 \Leftrightarrow Find a vector \hat{x} with $||A\hat{x} - b||_2 \le$ $(1+\varepsilon)(\min ||Ax-b||_2)$

Linear Regression

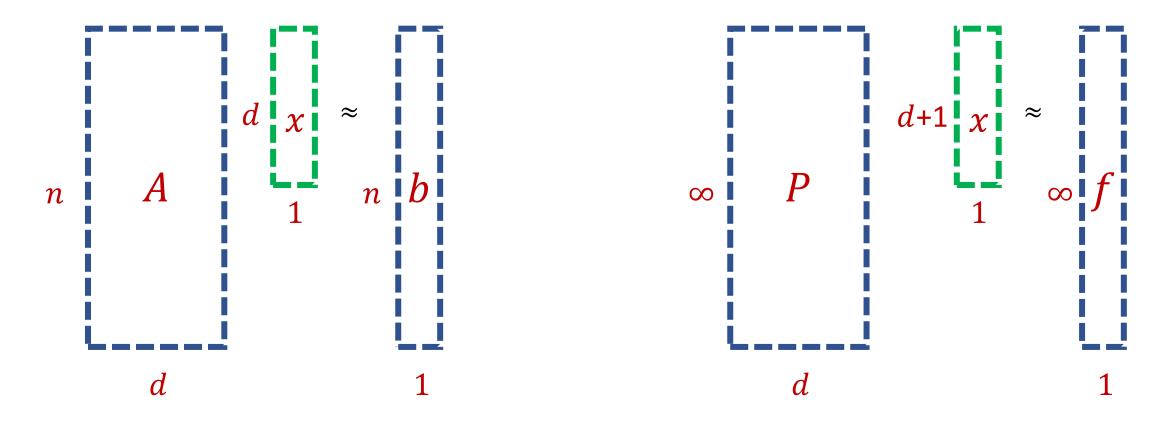
 \clubsuit If B = [A; b] and y = [x; -1], then Ax - b = By



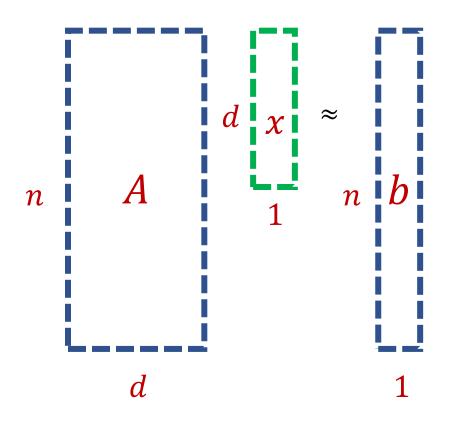
Linear Regression

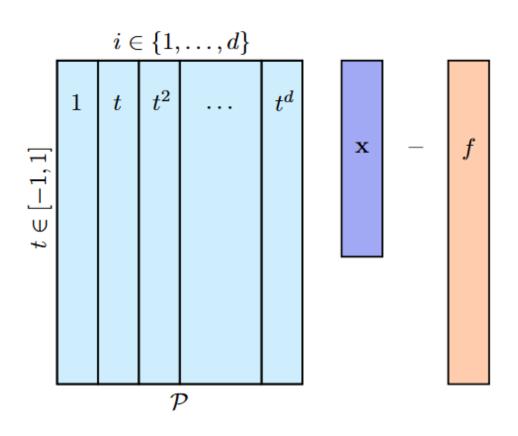
- \clubsuit If B = [A; b] and y = [x; -1], then Ax b = By
- ❖ If "free" access to all entries of B = [A; b], suffices to find a subspace embedding for B and then minimize $||By||_2$

Linear Regression to Polynomial Regression



Linear Regression to Polynomial Regression





L₂ Polynomial Regression

- **\Leftrigorange** Leverage score for matrices: $\tau_i = \max \frac{\langle a_i, x \rangle^2}{\|Ax\|_2^2}$
- \$\times\$ Leverage function for operators: $\tau(t) = \max_{\deg(q) \le d} \frac{|q(t)|^2}{\|q\|_2^2}$

Arr Can show $au(t) \leq O\left(\frac{d}{\sqrt{1-t^2}}\right)$, so roughly $O\left(\frac{d\log^2 d}{\varepsilon^2}\right)$ samples from the Chebyshev density suffice

Toward General p

 \clubsuit Analog of leverage score for general p?

• Previous L_2 leverage scores: $\tau_i(A) = \max \frac{\langle a_i, x \rangle^2}{\|Ax\|_2^2}$

L_p Sensitivities

- $\star L_p$ sensitivites: $\tau_i^{(p)}(A) = \max \frac{|\langle a_i, x \rangle|^p}{\|Ax\|_p^p}$
- ightharpoonup
 igh

- Pros: Easy to understand, generalize, i.e., "importance sampling"
- **Cons:** Gives suboptimal bounds, e.g., $\tilde{O}(d^2)$ samples for $p \in [1,2)$

L_p Sensitivities

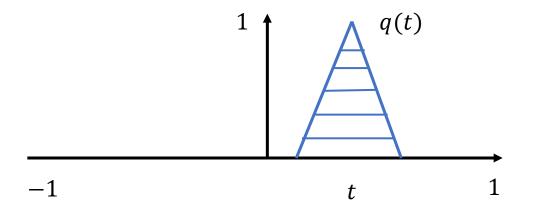
- L_p sensitivities for matrices: $\tau_i^{(p)}(A) = \max \frac{|\langle a_i, x \rangle|^p}{||Ax||_p^p}$
- $\star L_p$ sensitivities for operators: $\tau^{(p)}(t) = \max_{\deg(q) \le d} \frac{|q(t)|^p}{\|q\|_p^p}$

 \Leftrightarrow Want to bound $\tau^{(p)}(t)$

Upper Bound for L_p Sensitivities

$$\Rightarrow \text{ Structural result: } \tau^{(p)}(t) = \max_{\deg(q) \le d} \frac{|q(t)|^p}{\|q\|_p^p} \le O\left(\min\left(\frac{dp \log d}{\sqrt{1 - t^2}}, d^2p\right)\right)$$

• Normalize q(t) = 1, how small can $||q||_p^p$ be?



Upper Bound for L_p Sensitivities

❖ Bernstein's inequality: If q is a polynomial with degree d and $|q(t)| \le 1$ for $t \in [-1,1]$, then $|q'(t)| \le \frac{d}{\sqrt{1-t^2}}$ for all $t \in [-1,1]$

A Markov brothers' inequality: If q is a polynomial with degree d and $|q(t)| \le 1$ for $t \in [-1,1]$, then $|q'(t)| \le d^2$ for all $t \in [-1,1]$

L_p Sensitivities

 \P If |q| achieves maximum at t, then $||q||_p^p \ge \Omega\left(\max\left(\frac{\sqrt{1-t^2}}{dp},\frac{1}{d^2p}\right)\right)$

• Otherwise, show there exists a degree $O(d \log d)$ polynomial r that achieves maximum "near" t and $|||r||_p^p - ||q||_p^p| \le \frac{1}{d^3}$

L_p Sensitivities

 \clubsuit Constant factor approximation to L_p regression with $\operatorname{poly}(d,p)$ queries from the Chebyshev density for all $p \geq 1$, showing separation between polynomial L_p regression and matrix L_p regression, which requires $\Omega(d^{p/2})$ samples [LiWangWoodruff20]

Questions?

- ❖ Part 1: Background
- Part 2: Subspace Embeddings
- ❖ Part 3: Lewis Weights
- Part 4: Algorithm

Format

- 1. Show Chebyshev density are the L_p sensitivities
- 2. Show Chebyshev density are the Lewis weights
- 3. Uniform sampling + Lewis weight sampling for $p \in [1,2]$
- 4. Tensor trick + compact net for p > 2

L_p Sensitivities

- $\star L_p$ sensitivites: $\tau_i^{(p)}(A) = \max \frac{|\langle a_i, x \rangle|^p}{\|Ax\|_p^p}$
- ightharpoonup
 igh

- Pros: Easy to understand, generalize, i.e., "importance sampling"
- **Cons:** Gives suboptimal bounds, e.g., $\tilde{O}(d^2)$ samples for $p \in [1,2)$

Lp Lewis Weights

- L_p Lewis weights [CohenPeng15]: $w_i = \tau_i (W^{\frac{1}{2} \frac{1}{p}} A)$
- \Leftrightarrow Sample each row a_i with probability $p_i \propto w_i$ gives L_p subspace embedding

- Pros: Gives near-optimal bounds, e.g., $\tilde{O}(d)$ samples for $p \in [1,2)$
- Cons: Difficult to understand, generalize, i.e., "reweighted importance sampling"

Properties L_p Lewis Weights

Lp Lewis weights can be approximated by iteratively computing $\tau_i \left(W^{\frac{1}{2} - \frac{1}{p}} A \right)$ after initializing $W = I_n$

❖ If $\frac{1}{c} \le \frac{\tau_i \left(W^{\frac{1}{2} - \frac{1}{p}} A \right)}{w_i} \le C$, then W is a C-approximation to the L_p Lewis weights, for $p \in [1,2]$

L₁ Lewis Weight Fixed Point Ratio

❖ Goal: Show $\frac{1}{c} \le \frac{\tau(W^{-1/2} P)}{w(t)} \le C$, where τ is the leverage score function, $w(t) = \frac{d}{\sqrt{1-t^2}}$ is the Chebyshev density, and P is the polynomial operator

Change of basis to Chebyshev polynomials of the second kind, which are orthogonal under the inner product

$$\int_{-1}^{1} f(t)g(t)\sqrt{1-t^2}dt$$

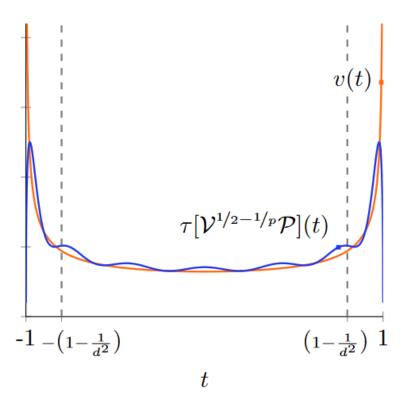
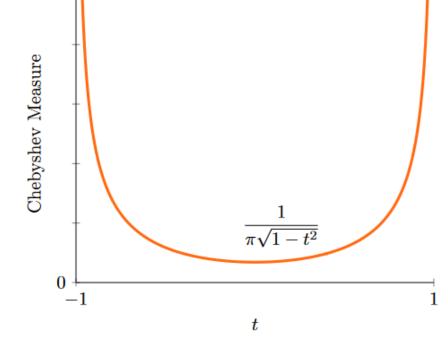


Figure 6: Plot of the scaled Chebyshev Measure (—) and corresponding reweighted leverage function $\tau[\mathcal{V}^{\frac{1}{2}-\frac{1}{p}}\mathcal{P}](t)$ (—) on [-1,1] for $d=6,\ p=1$. For most values of t both curves are close, but for $|t| > 1 - \frac{1}{d^2}$ the curves diverge. This means that the Chebyshev density itself does not directly approximate the L_p Lewis weights, motivating our study of a clipped version of the measure, denoted w(t).

L₁ Lewis Weight Fixed Point Ratio

❖ Goal: Show $\frac{1}{C} \le \frac{\tau(W^{-1/2} P)}{w(t)} \le C$, where τ is the leverage score function, $w(t) = \frac{d}{\sqrt{1-t^2}}$ is the Chebyshev density, and P is the polynomial operator

❖ NOT TRUE!



L₁ Lewis Weight Fixed Point Ratio

❖ Goal: Show $\frac{1}{c} \le \frac{\tau(U^{-1/2}P)}{u(t)} \le C$, where $u(t) = \min\left(\frac{d}{\sqrt{1-t^2}}, d^2\right)$ is the clipped Chebyshev density

- \clubsuit Behavior in the "middle" of u(t) is similar to w(t)
- Upper bounding the ratio in the "endcaps" from upper bounding the numerator
- Lower bounding the ratio in the "endcaps" by evaluating the numerator for a low-degree approximation of a high-degree polynomial

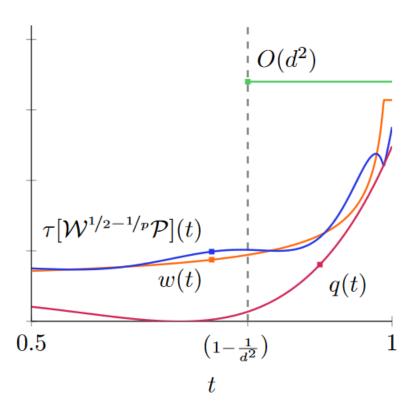


Figure 7: Plot of the clipped Chebyshev Measure (-) and corresponding reweighted leverage function (-) for $t \in [0.5, 1]$ and d = 6, p = 1. As proven in Theorem 2.2, these functions are within a constant factor for all t, so we can claim that the clipped measure approximates the L_p Lewis weights. We also visualize the "spike" polynomial q(t) (-) and upper bound (-) used in the proof of Theorem 2.2.

L_p Lewis Weight Fixed Point Ratio

❖ Structural result for
$$p = 1$$
: $\frac{1}{\text{polylog}(d)} \le \frac{\tau(U^{-1/2} P)}{u(t)} \le \text{polylog}(d)$

❖ By using Jacobi polynomials instead: $\frac{1}{\text{polylog}(d)} \le \frac{\tau^{\left(U^{\frac{1}{2} - \frac{1}{p}} p\right)}}{u(t)} \le \text{polylog}(d)$ for $p \in [1,2]$

L_p Lewis Weights Challenges

 \clubsuit There are no L_p known Lewis weights for operators

...no approximate Lewis weight theorem!

Questions?

- ❖ Part 1: Background
- Part 2: Subspace Embeddings
- ❖ Part 3: Lewis Weights
- Part 4: Algorithm

Format

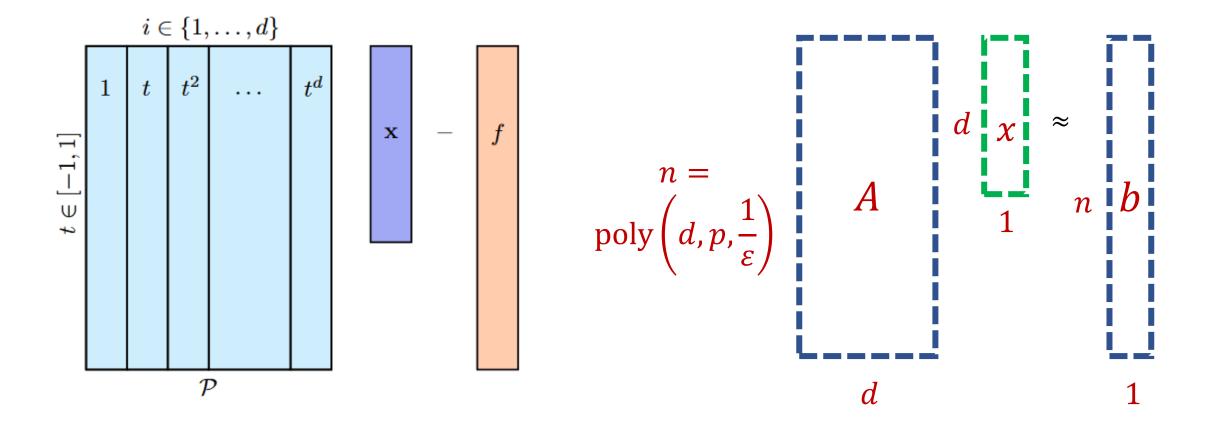
- 1. Show Chebyshev density are the L_p sensitivities
- 2. Show Chebyshev density are the Lewis weights
- 3. Uniform sampling + Lewis weight sampling for $p \in [1,2]$
- 4. Tensor trick + compact net for p > 2

Uniform Sampling

- Sample poly $(d, p, \frac{1}{\varepsilon})$ points uniformly at random from [-1,1] and form a matrix A from these points
- \clubsuit Let **b** be the corresponding measurements of the signal f

$$||Ax - b||_p \approx ||Px - f||_p = \left(\int_{-1}^1 |Px(t) - f(t)|^p \, dt \right)^{1/p}$$

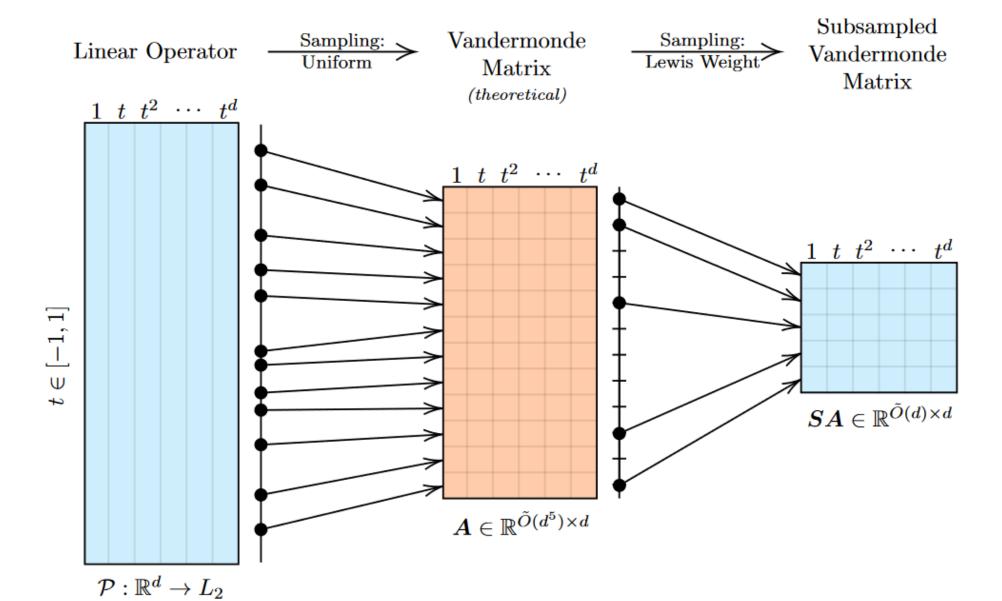
Uniform Sampling



Uniform Sampling Preserves Fixed Point Ratio

$$\frac{\tau(U^{-1/2} P)}{u(t)} \approx \frac{\tau(W^{-1/2} A)}{w_i(A)}$$

 \bullet Only $\tilde{O}\left(\frac{d}{\varepsilon^{O(1)}}\right)$ samples with L_p Lewis weights needed for $(1+\varepsilon)$ -approximation to L_p regression with $p \in [1,2]$ [ChenDerezinski21, ParulekarParulekarPrice21, MuscoMuscoWoodruffYasuda22]



(Simplified) Algorithm

- 1. Uniform sample $n = poly \left(d, p, \frac{1}{\varepsilon}\right)$ points from [-1,1] form a matrix A from these points
- 2. Perform L_p Lewis weight sampling on A
- 3. Return approximately optimal solution on sketched instance

- Sample with respect to Chebyshev density on [-1,1]
- Return approximately optimal solution on sketched instance

Challenges for p > 2

ightharpoonup Do not have structural property relating Chebyshev density with L_p Lewis weights for p>2

 L_p Lewis weights use $O(d^{p/2})$ samples

L_p Regression for p > 2

 \clubsuit L_p sensitivities are upper bounded by Chebyshev density

Use tensoring trick of [MeyerMuscoMuscoWoodruffZhou22] to union bound over a smaller net

(Simplified) Algorithm for p>2

- 1. Uniform sample $n = poly \left(d, p, \frac{1}{\varepsilon}\right)$ points from [-1,1] form a matrix A from these points
- 2. Perform L_p sensitivity sampling on A
- 3. Return approximately optimal solution on sketched instance

- Sample with respect to Chebyshev density on [-1,1]
- Return approximately optimal solution on sketched instance

Lower Bound

- Φ $\Omega\left(\frac{1}{\varepsilon^{p-1}}\right)$ queries are necessary for $(1+\varepsilon)$ -approximation to L_p regression
- Let $n = \frac{1}{\varepsilon^{p-1}}$ and I be an interval of length $\frac{n}{100}$ from [-1,1] so that with probability $\frac{2}{3}$, no query lands in I
- ❖ Define $f_+ = \frac{2^{\frac{1}{p}}}{\varepsilon}$ on I and 0 elsewhere, define $f_- = -\frac{2^{\frac{1}{p}}}{\varepsilon}$ on I and 0 elsewhere
- $||q f_+||_p^p = (1 O(\varepsilon)) ||f_+||_p^p \text{ for } q(t) = 1$

Summary

- $(1+\varepsilon)$ -approximation to L_p regression with $dp\left(\frac{\log^{O(p)}d}{\varepsilon^{O(p)}}\right)$ queries from the Chebyshev density for all $p\geq 1$
- Φ $\Omega\left(\frac{1}{\varepsilon^{p-1}}\right)$ queries are necessary for $(1+\varepsilon)$ -approximation to L_p regression
- $\Rightarrow \text{ Structural result: } \tau^{(p)}(t) = \max_{\deg(q) \le d} \frac{|q(t)|^p}{\|q\|_p^p} \le O\left(\min\left(\frac{dp \log d}{\sqrt{1 t^2}}, d^2p\right)\right)$
- Structural result: $\frac{1}{\text{polylog}(d)} \le \frac{\tau^{\left(U^{\frac{1}{2} \frac{1}{p}} p\right)}}{u(t)} \le \text{polylog}(d) \text{ for } p \in [1,2]$

Summary

- $(1+\varepsilon)$ -approximation to L_p regression with $dp\left(\frac{\log^{O(p)}d}{\varepsilon^{O(p)}}\right)$ queries from the Chebyshev density for all $p\geq 1$
- Φ $\Omega\left(\frac{1}{\varepsilon^{p-1}}\right)$ queries are necessary for $(1+\varepsilon)$ -approximation to L_p regression
- Question: Other loss functions?
- Question: Sparse Fourier regression [ChenKanePriceSong16, AvronKapralovMuscoMuscoVelingkerZandieh19]

