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Over 50% People CAN’T Solve This!!

What comes next?

1 4 9 22 49

𝑞 𝑥 = 𝑥3 − 5𝑥2 + 11𝑥 − 6



Polynomial Fitting

❖ Given 𝑞 𝑡1 , … , 𝑞 𝑡𝑚 , recover the polynomial 𝑞(𝑥)

❖ For a degree 𝑑 polynomial 𝑞(𝑥), must have 𝑚 ≥ 𝑑 + 1 samples to 
recover 𝑞(𝑥)



Polynomial Fitting

𝑞 𝑥 = 𝑎𝑑𝑥
𝑑 +⋯+ 𝑎1𝑥 + 𝑎0

𝑞 𝑡1 = 𝑎𝑑𝑡1
𝑑 +⋯+ 𝑎1𝑡1 + 𝑎0

𝑞 𝑡2 = 𝑎𝑑𝑡2
𝑑 +⋯+ 𝑎1𝑡2 + 𝑎0
⋮

𝑞 𝑡𝑚 = 𝑎𝑑𝑡𝑚
𝑑 +⋯+ 𝑎1𝑡𝑚 + 𝑎0



Polynomial Fitting

❖ For 𝑚 ≥ 𝑑 + 1, any choice of distinct 𝑡1, … , 𝑡𝑚 can recover 𝑞(𝑥)

❖ Solve the linear system, Lagrangian interpolation, etc.



Polynomial Regression

❖ For a signal 𝑓, recover the degree 𝑑 polynomial 𝑞 𝑥 that is the 
“best fit” to 𝑓

❖ What does best fit mean?



Polynomial Regression

❖ 𝑓 − 𝑞 𝑝 = 1−׬
1
𝑓 𝑡 − 𝑞 𝑡 𝑝 𝑑𝑡

1/𝑝

❖ 𝑓 − 𝑞 ∞ = max
𝑡∈[−1,1]

|𝑓 𝑡 − 𝑞 𝑡 |

❖ Polynomial regression: Given 𝜀 > 0 and 𝑝 ∈ [1,∞], output ෣𝑞(𝑡)
such that

𝑓 − ො𝑞 𝑝 ≤ (1 + 𝜀) min
deg 𝑞 ≤𝑑

𝑓 − 𝑞 𝑝



Polynomial Regression

❖ 𝑓 − 𝑞 𝑝 = 1−׬
1
𝑓 𝑡 − 𝑞 𝑡 𝑝 𝑑𝑡

1/𝑝

❖ 𝑓 − 𝑞 ∞ = max
𝑡∈[−1,1]

|𝑓 𝑡 − 𝑞 𝑡 |

𝑡

𝑓(𝑡)

1−1



Sample Complexity

❖ Sample complexity: Number 𝑚 of locations 𝑡1, … , 𝑡𝑚 at which the 
signal 𝑓 is read

❖ Sample complexity of polynomial fitting is 𝑚 = 𝑑 + 1

❖ What is the sample complexity of polynomial regression?



Deterministic Algorithms Do Not Work

𝑓(𝑡)

𝑡
1−1

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7



Deterministic Algorithms Do Not Work

𝑓(𝑡)

𝑡
1−1

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7



Previous Work for 𝐿2 Regression 

❖ 1 + 𝜀 -approximation to 𝐿2 regression with 𝑂
𝑑 log 𝑑

𝜀
queries 

[RauhutWard12, CohenDavenportLeviatan13, CohenMigliorati13]

❖ 1 + 𝜀 -approximation to 𝐿2 regression with 𝑂
𝑑

𝜀
queries 

[ChenPrice19]



Previous Work for 𝐿∞ Regression 

❖ 𝑂(log 𝑑)-approximation to 𝐿∞ regression with 𝑂 𝑑 log 𝑑 queries 
[Trefethen12]

❖ Constant factor approximation to 𝐿∞ regression with 𝑂 𝑑 log 𝑑
queries [KaneKarmalkarPrice17]





Our Results (I)

❖ 1 + 𝜀 -approximation to 𝐿𝑝 regression with 𝑑𝑝
log𝑂(𝑝) 𝑑

𝜀𝑂(𝑝)
queries 

from the Chebyshev density for all 𝑝 ≥ 1

❖ Upper bound shows separation in the degree 𝑑 between polynomial 
𝐿𝑝 regression and matrix 𝐿𝑝 regression, which requires Ω 𝑑𝑝/2

samples [LiWangWoodruff20]



Our Results (II)

❖ Ω
1

𝜀𝑝−1
queries are necessary for 1 + 𝜀 -approximation to 𝐿𝑝

regression 

❖ Proof recovers a result by [KaneKarmalkarPrice17] showing 
impossibility of 2 − 𝜀 -approximation to 𝐿∞ regression 





Algorithm

1. Sample with respect to 
Chebyshev density on 
[−1,1]

2. Return approximately 
optimal solution on 
sketched instance



FormatQuestions?

❖ Part 1: Background

❖ Part 2: Subspace Embeddings

❖ Part 3: Lewis Weights

❖ Part 4: Algorithm

1. Show Chebyshev density 
are the 𝐿𝑝 sensitivities

2. Show Chebyshev density 
are the Lewis weights

3. Uniform sampling + Lewis 
weight sampling for 𝑝 ∈
[1,2]

4. Tensor trick + compact net 
for 𝑝 > 2



Subspace Embedding

1 − 𝜀 𝐴𝑥 𝑝 ≤ 𝑇𝑥 𝑝 ≤ 1 + 𝜀 𝐴𝑥 𝑝

❖ Subspace embedding: Given 𝜀 > 0 and 𝐴 ∈
𝑅𝑛×𝑑, find matrix 𝑇 ∈ 𝑅𝑚×𝑑 with 𝑚 ≪ 𝑛, 
such that for every 𝑥 ∈ 𝑅𝑑 ,

𝑑

𝐴

𝑥
𝑛



Subspace Embedding

❖ If the rows of 𝐴 are “roughly” uniform, could 
uniformly sample a small number of rows of 𝐴
and rescale them to form subspace 
embedding 𝑇

1  0  0  0  0  0  

1  0  0  0  0  0

1  0  0  0  0  0  

1  0  0  0  0  0

1  0  0  0  0  0  

1  0  0  0  0  0

1  0  0  0  0  0  

𝐴𝑛

𝑑



Leverage Scores

❖ Intuition: how “important” a row is (importance sampling)

❖ 𝜏𝑖(𝐴) = max
𝑎𝑖,𝑥

2

𝐴𝑥 2
2 are the leverage scores of 𝐴 (in this case of row 𝑎𝑖 )

❖ 𝜏𝑖 𝐴 = max
𝑎𝑖,𝑥

2

𝐴𝑥 2
2 = max

𝑎𝑖,𝑥
2

σ𝑖=1
𝑛 𝑎𝑖,𝑥

2 ≤ 11  0

1  1



Leverage Scores

❖ 𝜏𝑖 𝐴 = max
𝑎𝑖,𝑥

2

𝐴𝑥 2
2 = max

𝑎𝑖,𝑥
2

σ𝑖=1
𝑛 𝑎𝑖,𝑥

2

❖ For 𝑥 = (1 − 1):

1  0

1  1

❖ 𝑎1, 𝑥
2 = 1 + 0 2 = 1 and 𝑎2, 𝑥

2 =
1 − 1 2 = 0

❖
𝑎1,𝑥

2

𝑎1,𝑥
2+ 𝑎2,𝑥

2 =
1

1
= 1, so 𝜏1 = 1

1
-1



Leverage Scores

❖ 𝜏𝑖 𝐴 = max
𝑎𝑖,𝑥

2

𝐴𝑥 2
2 = max

𝑎𝑖,𝑥
2

σ𝑖=1
𝑛 𝑎𝑖,𝑥

2

❖ For 𝑥 = (1 − 1):

1  0

1  1

❖ 𝑎1, 𝑥
2 = 1 + 0 2 = 1 and 𝑎2, 𝑥

2 =
1 − 1 2 = 0

❖
𝑎2,𝑥

2

𝑎1,𝑥
2+ 𝑎2,𝑥

2 =
0

1
= 0

1
-1



Leverage Scores

❖ 𝜏𝑖 𝐴 = max
𝑎𝑖,𝑥

2

𝐴𝑥 2
2 = max

𝑎𝑖,𝑥
2

σ𝑖=1
𝑛 𝑎𝑖,𝑥

2

❖ For 𝑥 = (0 1):

1  0

1  1

❖ 𝑎1, 𝑥
2 = 0 + 0 2 = 0 and 𝑎2, 𝑥

2 =
0 + 1 2 = 1

❖
𝑎2,𝑥

2

𝑎1,𝑥
2+ 𝑎2,𝑥

2 =
1

1
= 1, so 𝜏2 = 1

0
1



Leverage Scores

❖ 𝜏𝑖 𝐴 = max
𝑎𝑖,𝑥

2

𝐴𝑥 2
2 = max

𝑎𝑖,𝑥
2

σ𝑖=1
𝑛 𝑎𝑖,𝑥

2

❖ For 𝑥 = (1 0):

1  0

1  0

1  0

1  0

1  0

0  1

❖
𝑎1,𝑥

2

σ𝑖=1
𝑛 𝑎𝑖,𝑥

2 =
1

5
and in fact 𝜏1 =

1

5
1
0



Leverage Scores

❖ Intuition: how “important” a row is (importance sampling)

❖ 𝜏𝑖(𝐴) = max
𝑎𝑖,𝑥

2

𝐴𝑥 2
2 are the leverage scores of 𝐴 (in this case of row 𝑎𝑖 )

1  0

1  1

❖ Take 𝑥 = (1 − 1) to see that 𝜏1 = 1

❖ Take 𝑥 = (0 1) to see that 𝜏2 = 1

❖ 𝜏𝑖(𝐴) = 𝑎𝑖 𝐴
⊤𝐴 −1𝑎𝑖

⊤,  σ𝜏𝑖 = 𝑑 𝐴

𝑎𝑖



Leverage Scores

❖ Leverage score sampling: Sample 𝑂
𝑑 log 𝑑

𝜀2
rows of 𝐴 with 

probability proportional to leverage score 𝜏𝑖(𝐴) = max
𝑎𝑖,𝑥

2

𝐴𝑥 2
2

❖ Rescale sampled rows to form subspace embedding 𝑇

1 − 𝜀 𝐴𝑥 2 ≤ 𝑇𝑥 2 ≤ 1 + 𝜀 𝐴𝑥 2



Linear Regression

❖ Find the vector 𝑥 that minimizes 
𝐴𝑥 − 𝑏 2

❖ “Least squares” optimization

❖ Find a vector ො𝑥 with 𝐴ො𝑥 − 𝑏 2 ≤
(1 + 𝜀) min 𝐴𝑥 − 𝑏 2

𝑛

𝑑

𝑑

1
𝑛

1

≈

𝐴 𝑏

𝑥



Linear Regression

❖ If 𝐵 = 𝐴; 𝑏 and 𝑦 = 𝑥;−1 , then 𝐴𝑥 − 𝑏 = 𝐵𝑦

𝑛

𝑑

𝑑

1
𝑛

1

−

𝐴 𝑏

𝑥

𝑛

𝑑

−1

1

𝐴 𝑏

𝑥



Linear Regression

❖ If 𝐵 = 𝐴; 𝑏 and 𝑦 = 𝑥;−1 , then 𝐴𝑥 − 𝑏 = 𝐵𝑦
❖ If “free” access to all entries of 𝐵 = 𝐴; 𝑏 , suffices to find a 

subspace embedding for 𝐵 and then minimize 𝐵𝑦 2



Linear Regression to Polynomial Regression

𝑛

𝑑

𝑑

1
𝑛

1

≈

𝐴 𝑏

𝑥

∞

𝑑

𝑑+1

1
∞

1

≈

𝑃 𝑓

𝑥



Linear Regression to Polynomial Regression

𝑛

𝑑

𝑑

1
𝑛

1

≈

𝐴 𝑏

𝑥



𝐿2 Polynomial Regression

❖ Leverage score for matrices: 𝜏𝑖 = max
𝑎𝑖,𝑥

2

𝐴𝑥 2
2

❖ Leverage function for operators: 𝜏(𝑡) = max
deg 𝑞 ≤𝑑

𝑞 𝑡 2

𝑞 2
2

❖ Can show 𝜏 𝑡 ≤ 𝑂
𝑑

1−𝑡2
, so roughly 𝑂

𝑑 log2 𝑑

𝜀2
samples from 

the Chebyshev density suffice



Toward General 𝑝

❖ Analog of leverage score for general 𝑝?

❖ Previous 𝐿2 leverage scores: 𝜏𝑖(𝐴) = max
𝑎𝑖,𝑥

2

𝐴𝑥 2
2



𝐿𝑝 Sensitivities

❖ 𝐿𝑝 sensitivites: 𝜏𝑖
(𝑝)
(𝐴) = max

𝑎𝑖,𝑥
𝑝

𝐴𝑥 𝑝
𝑝

❖ Sample each row 𝑎𝑖 with probability 𝑝𝑖 ∝ 𝜏𝑖
(𝑝)
(𝐴) gives 𝐿𝑝 subspace 

embedding

❖ Pros: Easy to understand, generalize, i.e., “importance sampling”

❖ Cons: Gives suboptimal bounds, e.g., ෨𝑂 𝑑2 samples for 𝑝 ∈ [1,2)



𝐿𝑝 Sensitivities

❖ 𝐿𝑝 sensitivities for matrices: 𝜏𝑖
(𝑝)
(𝐴) = max

𝑎𝑖,𝑥
𝑝

𝐴𝑥 𝑝
𝑝

❖ 𝐿𝑝 sensitivities for operators: 𝜏(𝑝)(𝑡) = max
deg 𝑞 ≤𝑑

𝑞 𝑡 𝑝

𝑞 𝑝
𝑝

❖ Want to bound 𝜏(𝑝)(𝑡)



Upper Bound for 𝐿𝑝 Sensitivities

❖ Structural result: 𝜏 𝑝 𝑡 = max
deg 𝑞 ≤𝑑

𝑞 𝑡 𝑝

𝑞 𝑝
𝑝 ≤ 𝑂 min

𝑑𝑝 log 𝑑

1−𝑡2
, 𝑑2𝑝

❖ Normalize 𝑞 𝑡 = 1, how small can 𝑞 𝑝
𝑝

be?

𝑡

𝑞(𝑡)

1−1

1



Upper Bound for 𝐿𝑝 Sensitivities

❖ Bernstein’s inequality: If 𝑞 is a polynomial with degree 𝑑 and |𝑞 𝑡 | ≤

1 for 𝑡 ∈ [−1,1], then |𝑞′ 𝑡 | ≤
𝑑

1−𝑡2
for all 𝑡 ∈ [−1,1]

❖ Markov brothers’ inequality: If 𝑞 is a polynomial with degree 𝑑 and 
|𝑞 𝑡 | ≤ 1 for 𝑡 ∈ [−1,1], then |𝑞′ 𝑡 | ≤ 𝑑2 for all 𝑡 ∈ [−1,1]



𝐿𝑝 Sensitivities

❖ If |𝑞| achieves maximum at 𝑡, then 𝑞 𝑝
𝑝
≥ Ω max

1−𝑡2

𝑑𝑝
,
1

𝑑2𝑝

❖ Otherwise, show there exists a degree 𝑂(𝑑 log 𝑑) polynomial 𝑟 that 

achieves maximum “near” 𝑡 and 𝑟 𝑝
𝑝
− 𝑞 𝑝

𝑝
≤

1

𝑑3



𝐿𝑝 Sensitivities

❖ Structural result: 𝜏 𝑝 𝑡 = max
deg 𝑞 ≤𝑑

𝑞 𝑡 𝑝

𝑞 𝑝
𝑝 ≤ 𝑂 min

𝑑𝑝 log 𝑑

1−𝑡2
, 𝑑2𝑝

❖ Constant factor approximation to 𝐿𝑝 regression with poly(𝑑, 𝑝)
queries from the Chebyshev density for all 𝑝 ≥ 1, showing separation 
between polynomial 𝐿𝑝 regression and matrix 𝐿𝑝 regression, which 
requires Ω 𝑑𝑝/2 samples [LiWangWoodruff20]



FormatQuestions?

❖ Part 1: Background

❖ Part 2: Subspace Embeddings

❖ Part 3: Lewis Weights

❖ Part 4: Algorithm

1. Show Chebyshev density 
are the 𝐿𝑝 sensitivities

2. Show Chebyshev density 
are the Lewis weights

3. Uniform sampling + Lewis 
weight sampling for 𝑝 ∈
[1,2]

4. Tensor trick + compact net 
for 𝑝 > 2



𝐿𝑝 Sensitivities

❖ 𝐿𝑝 sensitivites: 𝜏𝑖
(𝑝)
(𝐴) = max

𝑎𝑖,𝑥
𝑝

𝐴𝑥 𝑝
𝑝

❖ Sample each row 𝑎𝑖 with probability 𝑝𝑖 ∝ 𝜏𝑖
(𝑝)
(𝐴) gives 𝐿𝑝 subspace 

embedding

❖ Pros: Easy to understand, generalize, i.e., “importance sampling”

❖ Cons: Gives suboptimal bounds, e.g., ෨𝑂 𝑑2 samples for 𝑝 ∈ [1,2)



𝐿𝑝 Lewis Weights

❖ 𝐿𝑝 Lewis weights [CohenPeng15]: 𝑤𝑖 = 𝜏𝑖 𝑊
1

2
−
1

𝑝𝐴

❖ Sample each row 𝑎𝑖 with probability 𝑝𝑖 ∝ 𝑤𝑖 gives 𝐿𝑝 subspace 
embedding

❖ Pros: Gives near-optimal bounds, e.g., ෨𝑂 𝑑 samples for 𝑝 ∈ [1,2)

❖ Cons: Difficult to understand, generalize, i.e., “reweighted importance 
sampling” 



Properties 𝐿𝑝 Lewis Weights

❖ 𝐿𝑝 Lewis weights can be approximated by iteratively computing 

𝜏𝑖 𝑊
1

2
−
1

𝑝𝐴 after initializing 𝑊 = 𝐼𝑛

❖ If 
1

𝐶
≤

𝜏𝑖 𝑊
1
2−

1
𝑝𝐴

𝑤𝑖
≤ 𝐶, then 𝑊 is a 𝐶-approximation to the 𝐿𝑝 Lewis 

weights, for 𝑝 ∈ [1,2]



𝐿1 Lewis Weight Fixed Point Ratio

❖ Goal: Show 
1

𝐶
≤

𝜏 𝑊−1/2 𝑃

𝑤(𝑡)
≤ 𝐶, where 𝜏 is the leverage score 

function, 𝑤 𝑡 =
𝑑

1−𝑡2
is the Chebyshev density, and 𝑃 is the 

polynomial operator

❖ Change of basis to Chebyshev polynomials of the second kind, which 
are orthogonal under the inner product

න
−1

1

𝑓 𝑡 𝑔 𝑡 1 − 𝑡2𝑑𝑡





𝐿1 Lewis Weight Fixed Point Ratio

❖ Goal: Show 
1

𝐶
≤

𝜏 𝑊−1/2 𝑃

𝑤(𝑡)
≤ 𝐶, where 𝜏 is the leverage score 

function, 𝑤 𝑡 =
𝑑

1−𝑡2
is the Chebyshev density, and 𝑃 is the 

polynomial operator

❖ NOT TRUE!



𝐿1 Lewis Weight Fixed Point Ratio

❖ Goal: Show 
1

𝐶
≤

𝜏 𝑈−1/2 𝑃

𝑢(𝑡)
≤ 𝐶, where 𝑢 𝑡 = min

𝑑

1−𝑡2
, 𝑑2

is the clipped Chebyshev density

❖ Behavior in the “middle” of 𝑢 𝑡 is similar to 𝑤 𝑡

❖ Upper bounding the ratio in the “endcaps” from upper 
bounding the numerator

❖ Lower bounding the ratio in the “endcaps” by evaluating the 
numerator for a low-degree approximation of a high-degree 
polynomial





𝐿𝑝 Lewis Weight Fixed Point Ratio

❖ Structural result for 𝑝 = 1: 
1

polylog(𝑑)
≤

𝜏 𝑈−1/2 𝑃

𝑢(𝑡)
≤ polylog(𝑑)

❖ By using Jacobi polynomials instead: 
1

polylog(𝑑)
≤

𝜏 𝑈
1
2
−
1
𝑝 𝑃

𝑢(𝑡)
≤

polylog(𝑑) for 𝑝 ∈ [1,2]



𝐿𝑝 Lewis Weights Challenges

❖ There are no 𝐿𝑝 known Lewis weights for operators

❖ …no approximate Lewis weight theorem!



FormatQuestions?

❖ Part 1: Background

❖ Part 2: Subspace Embeddings

❖ Part 3: Lewis Weights

❖ Part 4: Algorithm

1. Show Chebyshev density 
are the 𝐿𝑝 sensitivities

2. Show Chebyshev density 
are the Lewis weights

3. Uniform sampling + Lewis 
weight sampling for 𝑝 ∈
[1,2]

4. Tensor trick + compact net 
for 𝑝 > 2



Uniform Sampling

❖ Sample poly 𝑑, 𝑝,
1

𝜀
points uniformly at random from [−1,1] and 

form a matrix 𝐴 from these points

❖ Let 𝑏 be the corresponding measurements of the signal 𝑓

❖ 𝐴𝑥 − 𝑏 𝑝 ≈ 𝑃𝑥 − 𝑓 𝑝 = 1−׬
1
𝑃𝑥 𝑡 − 𝑓 𝑡 𝑝 𝑑𝑡

1/𝑝



Uniform Sampling

𝑛 =

poly 𝑑, 𝑝,
1

𝜀

𝑑

𝑑

1
𝑛

1

≈

𝐴 𝑏

𝑥



Uniform Sampling Preserves Fixed Point Ratio

❖
𝜏 𝑈−1/2 𝑃

𝑢(𝑡)
≈

𝜏 𝑊−1/2 𝐴

𝑤𝑖(𝐴)

❖ Only ෨𝑂
𝑑

𝜀𝑂(1)
samples with 𝐿𝑝 Lewis weights needed for 1 + 𝜀 -

approximation to 𝐿𝑝 regression with 𝑝 ∈ [1,2] [ChenDerezinski21, 
ParulekarParulekarPrice21, MuscoMuscoWoodruffYasuda22]





(Simplified) Algorithm

1. Uniform sample 𝑛 =

poly 𝑑, 𝑝,
1

𝜀
points from 

[−1,1] form a matrix 𝐴
from these points

2. Perform 𝐿𝑝 Lewis weight 

sampling on 𝐴
3. Return approximately 

optimal solution on 
sketched instance

1. Sample with respect to 
Chebyshev density on 
[−1,1]

2. Return approximately 
optimal solution on 
sketched instance



Challenges for 𝑝 > 2

❖ Do not have structural property relating Chebyshev density with 𝐿𝑝
Lewis weights for 𝑝 > 2

❖ 𝐿𝑝 Lewis weights use 𝑂 𝑑𝑝/2 samples



𝐿𝑝 Regression for 𝑝 > 2

❖ 𝐿𝑝 sensitivities are upper bounded by Chebyshev density

❖ Use tensoring trick of [MeyerMuscoMuscoWoodruffZhou22] to union 
bound over a smaller net



(Simplified) Algorithm for 𝑝 > 2

1. Uniform sample 𝑛 =

poly 𝑑, 𝑝,
1

𝜀
points from 

[−1,1] form a matrix 𝐴
from these points

2. Perform 𝐿𝑝 sensitivity 

sampling on 𝐴
3. Return approximately 

optimal solution on 
sketched instance

1. Sample with respect to 
Chebyshev density on 
[−1,1]

2. Return approximately 
optimal solution on 
sketched instance



Lower Bound

❖ Ω
1

𝜀𝑝−1
queries are necessary for 1 + 𝜀 -approximation to 𝐿𝑝

regression 

❖ Let 𝑛 =
1

𝜀𝑝−1
and 𝐼 be an interval of length 

𝑛

100
from [−1,1] so that 

with probability 
2

3
, no query lands in 𝐼

❖ Define 𝑓+ =
2
1
𝑝

𝜀
on 𝐼 and 0 elsewhere, define 𝑓− = −

2
1
𝑝

𝜀
on 𝐼 and 0

elsewhere

❖ 𝑞 − 𝑓+ 𝑝
𝑝
= 1 − 𝑂 𝜀 𝑓+ 𝑝

𝑝
for 𝑞 𝑡 = 1



Summary

❖ 1 + 𝜀 -approximation to 𝐿𝑝 regression with 𝑑𝑝
log𝑂(𝑝) 𝑑

𝜀𝑂(𝑝)
queries 

from the Chebyshev density for all 𝑝 ≥ 1

❖ Ω
1

𝜀𝑝−1
queries are necessary for 1 + 𝜀 -approximation to 𝐿𝑝

regression 

❖ Structural result: 𝜏 𝑝 𝑡 = max
deg 𝑞 ≤𝑑

𝑞 𝑡 𝑝

𝑞 𝑝
𝑝 ≤ 𝑂 min

𝑑𝑝 log 𝑑

1−𝑡2
, 𝑑2𝑝

❖ Structural result:  
1

polylog(𝑑)
≤

𝜏 𝑈
1
2
−
1
𝑝 𝑃

𝑢(𝑡)
≤ polylog(𝑑) for 𝑝 ∈ [1,2]



Summary

❖ 1 + 𝜀 -approximation to 𝐿𝑝 regression with 𝑑𝑝
log𝑂(𝑝) 𝑑

𝜀𝑂(𝑝)
queries 

from the Chebyshev density for all 𝑝 ≥ 1

❖ Ω
1

𝜀𝑝−1
queries are necessary for 1 + 𝜀 -approximation to 𝐿𝑝

regression 

❖ Question: Other loss functions?

❖ Question: Sparse Fourier regression [ChenKanePriceSong16, 
AvronKapralovMuscoMuscoVelingkerZandieh19]
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