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Quantifying Performance

Make no distributional assumptions

We judge our algorithm based on regret.

Definition (Regret)

# of mistakes algorithm makes more than the best expert

# of days
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a fundamental problem of sequential prediction

Day You Actual outcome

1
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3

4

Prediction with Expert Advice

Algorithm 
makes 2 
mistakes
Best expert 
makes 1 
mistake

1/4 Regret



The Online Learning with Experts Problem

• 𝑛 experts who decide either {0,1} on each of 𝑇 days (𝑛 ≫ 𝑇)

• Algorithm takes advice from experts and predict either {0,1} on each 
day

• Algorithm sees the outcome, which is either {0,1}, of each day and 
can use this information on future days

• The cost of the algorithm is the number of incorrect predictions

• Regret is (# of mistakes we make - 𝑀)/𝑇, i.e., the amortized 
additional cost of the algorithm compared to the cost 𝑀 of the best 
expert



Applications of the Experts Problem

• Ensemble learning, e.g., AdaBoost

• Forecast and portfolio optimization

• Special case of online convex optimization



Day Algorithm Actual outcome

1

2

3

4

weights 1 1 1 1

1 1/2 1 1

1 1/2 1/2 1

1/2 1/2 1/4 1/2

1/2 1/4 1/4 1/4

Weighted Majority (Littlestone, Warmuth 89)



Day Algorithm Actual outcome

1

2

3

4

weights 1 1 1 1

1 𝟏 − 𝜺 1 1

1 1

Weighted Majority (Littlestone, Warmuth 89)
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𝟏 − 𝜺 𝟐 𝟏 − 𝜺 𝟐 𝟏 − 𝜺 𝟐



Theorem (Deterministic Weighted Majority)

where M is the # of mistakes the best expert makes, n is # of experts.

# of mistakes by 
deterministic weighted 

majority
≤ (2+𝜀)M + 

2

𝜀
ln n

Guarantee for Weighted Majority

● 1 − 𝜀 𝑀 ≤ sum of the weights ≤ 1 −
𝜀

2

𝑚
𝑛



Theorem (Randomized Weighted Majority, i.e, Multiplicative Weights)

For ε > 0, can construct algorithm A such that 

E[# of mistakes by A] ≤ (1 + ε) M +  
O( ln n )

ε

Guarantee for Weighted Majority

Theorem (Deterministic Weighted Majority)

where M is the # of mistakes the best expert makes, n is # of experts.

# of mistakes by 
deterministic weighted 

majority
≤ (2+𝜀)M + 

2

𝜀
ln n



Previous Work

• Weighted majority algorithm down-weights each expert that is 
incorrect on each day and selects the weighted majority as the output 

• Weighted majority algorithm gets (2 + 𝜀)𝑀 +
𝑂(log 𝑛)

𝜀
total mistakes 

• Randomized weighted majority algorithm randomly follows each 
expert with probability proportional to the weight of the expert

• Randomized weighted majority algorithm achieves regret 𝑂
log 𝑛

𝑇



Memory Bounds for the Expert Problem

• These algorithms require Ω(𝑛) memory to maintain weights for each 
expert – but what if 𝑛 is very large and we want sublinear space?

• Can use no memory and just randomly guess each day – still good if 
the best expert makes a lot of mistakes but bad if the best expert 
makes very few mistakes

• What are the space/accuracy tradeoffs for the online learning with 
experts problem?



wake up with 
no memory 

except a note 
from your past 

self
(at most s bits)

see expert predictions for today make a prediction see outcome

write a note to your future self
(at most s bits)

fall asleep and forget everything

repeat

The Streaming Model



Definition (Arbitrary Order Model)

An adversary chooses a worst-case ordering of the days and outcomes in the stream 

beforehand. 

Definition (Random Order Model)

An adversary chooses worst-case ordering of the outcomes, then the order of days is 

randomly shuffled.  

The complete sequence of T days is the data stream.

(prediction1, outcome1), . . . , (predictionT, outcomeT)

The Streaming Model



A Natural Idea

• What if we just identify the best expert?

• Find the best expert so far, follow it until a new best expert emerges, 
identify the new best expert, find it, repeat
• Doesn’t even work in offline setting

• Could do weighted majority, but uses Ω 𝑛 space



Set Disjointness Communication Problem

• Set disjointness communication problem: Alice has a set 𝑋 ∈ 0,1 𝑛

and Bob has a set 𝑌 ∈ 0,1 𝑛 and the promise is that either 𝑋 ∩ 𝑌 =
0 or 𝑋 ∩ 𝑌 = 1

• Set disjointness requires total (randomized) communication Ω 𝑛

𝑋 𝑌 𝑋 𝑌



Reduction

• Holds even for 2 days (can copy each 
day T/2 times if desired) 

• Alice creates a stream 𝑆 so that each 
element of 𝑋 is an expert that is 
correct on day 1

• Bob creates a stream 𝑆′ so that each 
element of 𝑌 is an expert that is 
correct on day 2

Day
Algorithm

1

2

Expert 1 Expert 3 Expert 6



Reduction

• Alice runs streaming algorithm 𝐴 on the stream 𝑆 created by their set 𝑋
and passes the state of 𝐴 to Bob, who continues running the algorithm 
on the stream 𝑆′ created by their set 𝑌

• At the end, 𝐴 will output an expert 𝑖 ∈ [𝑛], and then Alice and Bob will 
check whether 𝑋 ∩ 𝑌 = 𝑖

• Solves set disjointness* so 𝐴 must use Ω 𝑛 space

• Not end of story: low-regret algorithm need not find best expert, even 
if second best expert makes half as many mistakes



Our Results (I)

• Any algorithm that achieves 𝛿 <
1

2
regret with probability at least 

3

4

must use Ω
𝑛

𝛿2𝑇
space

• Lower bound holds for arbitrary-order, random-order, and i.i.d.
streams



Our Results (II)

• There exists an algorithm that uses 𝑂
𝑛

𝛿2𝑇
log2 𝑛 log

1

𝛿
space and achieves 

expected regret 𝛿 >
8 log 𝑛

𝑇
in the random-order model

• The algorithm is almost-tight with the space lower bounds and oblivious to 
𝑀, the number of mistakes made by the best-expert

• Can achieve regret almost matching randomized weighted majority

• Result extends to general costs in [0, 𝜌] with expected regret 𝜌𝛿



Our Results (III)

• For 𝑀 <
𝛿2𝑇

1280 log2𝑛
and 𝛿 >

128 log2 𝑛

𝑇
, there exists an algorithm 

that uses ෨𝑂
𝑛

𝛿𝑇
space and achieves regret 𝛿 with probability 

4

5

• The algorithm *beats* the lower bounds, showing that the hardness 
comes from the best expert making a “lot” of mistakes 

• Can achieve regret almost matching randomized weighted majority

• The algorithm oblivious to 𝑀, the number of mistakes made by the 
best expert



Questions?Format

❖ Part 1: Background

❖ Part 2: Lower Bound

❖ Part 3: Arbitrary Model

❖ Part 4: Random-Order Model



Lower Bound

• Any algorithm that achieves 𝛿 <
1

2
(average) regret with probability 

at least 
3

4
must use Ω

𝑛

𝛿2𝑇
space

• Lower bound holds for arbitrary-order, random-order, and i.i.d.
streams



Communication Problem for Lower Bound

• Distributed detection problem

• 𝜀-DIFFDIST problem: 𝑇 players each hold 𝑛 bits and must distinguish 
between two cases. 

• Case 1: (NO) Every index for every player is drawn i.i.d. from a fair 

coin, i.e., a Bernoulli distribution with parameter 
1

2

• Case 2: (YES) An index 𝐿 ∈ [𝑛] is selected arbitrarily. The 𝐿-th bit of 
each player is chosen i.i.d. from a Bernoulli distribution with 

parameter 
1

2
+ 𝜀 and all the other bits are chosen i.i.d. from a fair coin



Communication Problem for Lower Bound

H T H T H

T H H H H

H H T H T

H T H T T

H T H T H

T H H H H

H H T H T

H H H T T

YESNO



𝜀-DIFFDIST Problem

• 𝜀-DIFFDIST problem: 𝑇 players each hold 𝑛 bits and must distinguish 
between two cases. 

• Protocol: Randomly choose ෨𝑂
1

𝜀2
players and send all bits of those 

players, see whether some bit has bias at least 
𝜀

2



Communication Problem for Lower Bound

H T H T H

T H H H H

H H T H T

H T H T T

H T H T H

T H H H H

H H T H T

H H H T T

YESNO



𝜀-DIFFDIST Problem

• 𝜀-DIFFDIST problem: 𝑇 players each hold 𝑛 bits and must distinguish 
between two cases. 

• Protocol: Randomly choose ෨𝑂
1

𝜀2
players and send all bits of those 

players, see whether some bit has bias at least 
𝜀

2

• Communication of protocol: ෨𝑂
𝑛

𝜀2

• Theorem: Ω
𝑛

𝜀2
communication is necessary



𝜀-DIFFDIST Problem

• Theorem: Ω
𝑛

𝜀2
communication is necessary

• Fact: Ω
1

𝜀2
samples are necessary to distinguish between a fair coin, 

i.e., a Bernoulli distribution with parameter 
1

2
and a coin with bias 𝜀

• Intuition: players sort of need to solve the single coin problem on 
each of the 𝑛 coins (actually just need the OR)



𝜀-DIFFDIST Problem

• Formally, all the coins are independent in the NO distribution

• Can use a direct sum theorem for OR [BJKS04], so reduces to showing 
high information cost under NO distribution on a single coin

• Ω
1

𝜀2
information necessary to distinguish between a single fair 

coin, i.e., a Bernoulli distribution with parameter 
1

2
and a coin with 

bias 𝜀, even when information is measured under the NO distribution

• Uses strong data processing inequality [ZDJW13, GMN14, BGM+16]



𝜀-DIFFDIST Summary

• 𝜀-DIFFDIST problem: 𝑇 players each hold 𝑛 bits and must distinguish 
between two cases. 

• Case 1: (NO) Every index for every player is drawn i.i.d. from a fair 

coin, i.e., a Bernoulli distribution with parameter 
1

2

• Case 2: (YES) An index 𝐿 ∈ [𝑛] is selected arbitrarily. The 𝐿-th bit of 
each player is chosen i.i.d. from a Bernoulli distribution with 

parameter 
1

2
+ 𝜀 and all the other bits are chosen i.i.d. from a fair coin

• Fact: Ω
𝑛

𝜀2
communication is necessary to solve the problem



Reduction Intuition

• Each player in the 𝜀-DIFFDIST Problem corresponds to a different day

• Each bit in the 𝜀-DIFFDIST Problem corresponds to a different expert

• Reduction: distinguishing whether there exists a slightly biased 
random bit corresponds to distinguishing whether there exists a 
slightly “better” expert



Day You Actual outcome

1

2

3

4

Reduction Challenge



Reduction

• We would like to use an online learning with experts algorithm for 

solving 𝜀-DIFFDIST Problem for 𝜀 = 𝑂 𝛿 by sampling Ω
1

𝛿2
players

• However, an algorithm with bad guarantees can still “luckily” have 
good cost

• Use masking argument – outcome of each day is masked by an 
independent fair coin flip on each day (expert advice also flipped)



Day YouActual outcome

1

2

3

4

Reduction Challenge

Actual outcome

MASK=0

MASK=1

MASK=1

MASK=1



Reduction

• For constant 𝛿 <
1

2
, if there is no biased coin, no expert will do better 

than 
1

2
+

𝛿

3
with probability at least 

1

4

• For constant 𝛿 <
1

2
, if there is a biased coin, an expert will do better 

than 
1

2
+

2𝛿

3
with probability at least 

1

4



Reduction Summary

• The online learning with experts algorithm with regret 𝛿 will be able 

to solve the 𝜀-DIFFDIST Problem with probability at least 
3

4
for 𝜀 =

𝑂 𝛿 . Must use Ω
𝑛

𝛿2
total communication

• Any algorithm that achieves 𝛿 <
1

2
regret with probability at least 

3

4

must use Ω
𝑛

𝛿2𝑇
space



Questions?Format

❖ Part 1: Background

❖ Part 2: Lower Bound

❖ Part 3: Arbitrary Model

❖ Part 4: Random-Order Model



No Mistake Regime

• For 𝑀 <
𝛿2𝑇

1280 log2𝑛
and 𝛿 >

128 log2 𝑛

𝑇
, there exists an algorithm that 

uses ෨𝑂
𝑛

𝛿𝑇
space and achieves regret 𝛿 with probability 

4

5

• We know there is a really accurate expert. What if we iteratively pick 
“pools” of experts and delete them if they run “poorly”?



Day You Actual outcome

1

2

3

4

Reduction Problem



No Mistake Regime

• If iteratively pick pool of next 𝑘 experts (“rounds”) and output the 
majority vote of the pool while deleting any incorrect expert, each 
pool will have at most 𝑂(log 𝑘) errors

• If best expert makes no mistakes, use 
𝑛

𝑘
pools to achieve regret 𝛿𝑇

means setting 𝑘 = ෨𝑂
𝑛

𝛿𝑇



No Mistake Regime Summary

• Algorithm: Iteratively pick pool of next 𝑘 = ෨𝑂
𝑛

𝛿𝑇
experts (“rounds”) 

and output the majority vote of the pool while deleting any incorrect 
expert

• If the number of rounds is small, the pools must have done well so 
the overall regret is small

• The number of rounds cannot be large because at some point the 
best expert would have been sampled and retained



“Low-Mistake” Regime

• Algorithm: Iteratively pick pool of next 𝑘 = ෨𝑂
𝑛

𝛿𝑇
experts (“rounds”) 

and output the majority vote of the pool while deleting any incorrect 
expert

• If best expert makes 𝑀 mistakes, use 
𝑛𝑀

𝑘
pools to achieve regret 𝛿𝑇

means setting 𝑘 = ෨𝑂
𝑛𝑀

𝛿𝑇
, but this is too large!



“Low-Mistake” Fix-Its

• Fix #1: Randomly sample pools of experts instead of iteratively 
picking pools

• Problem #1: Cannot guarantee that the best expert will be retained

• Fix #2: Delete experts that have erred with fraction at least 1 − 𝛿

• Problem #2: “Build-up” of errors



A Really Bad Case Study

• Suppose 𝛿 =
1

2

• Example shows that the pool of 
𝑘 = 8 sampled experts can make 
roughly 𝑇 − 𝑇/𝑘 errors



“Low-Mistake” Regime

• Algorithm: Repeatedly sample a pool of 𝑘 = ෨𝑂
𝑛

𝛿𝑇
experts and 

output the majority vote of the pool while deleting any expert with 

lower than 1 −
𝛿

8 log 𝑛
accuracy since it was sampled

• If the number of rounds is small, the pools must have done well so 
the overall regret is small

• The number of rounds cannot be large because at some point the 
best expert would have been sampled and retained

WANT TO SHOW



“Low-Mistake” Regime: First Property

• Algorithm: Repeatedly sample a pool of 𝑘 = ෨𝑂
𝑛

𝛿𝑇
experts and 

output the majority vote of the pool while deleting any expert with 

lower than 1 −
𝛿

8 log 𝑛
accuracy since it was sampled

• Lemma: For 𝛿 >
128 log2 𝑛

𝑇
, a pool that is used for 𝑡 days can only 

make 
𝑡𝛿

2
+ 4 log 𝑛 mistakes

• For the algorithm to make 𝑇𝛿 mistakes, need at least 
𝑇𝛿

8 log 𝑛
rounds



“Low-Mistake” Regime: Second Property

• For the algorithm to make 𝑇𝛿 mistakes, need at least 
𝑇𝛿

8 log 𝑛
rounds

• “BAD” day: the best expert is deleted by the pool if it is sampled on 
that day

• BAD ≤
8𝑀log 𝑛

𝛿

X X X X X X



“Low-Mistake” Regime: Second Property

• For the algorithm to make 𝑇𝛿 mistakes, need at least 
𝑇𝛿

8 log 𝑛
rounds

• A bad algorithm must not sample the best expert on a “GOOD” day

“BAD” “BAD” “BAD” “GOOD” 



“Low-Mistake” Regime: Second Property

• For the algorithm to make 𝑇𝛿 mistakes, need at least 
𝑇𝛿

8 log 𝑛
rounds

• Must avoid sampling the best expert on Ω
𝑇𝛿

log 𝑛
rounds

• 𝑂
𝑛 log2 𝑛

𝛿𝑇
experts sampled in each round → low probability



Analysis
• Define a set of random variables 𝑑1, 𝑑2, … for each round’s day

• Given 𝑑𝑖, draw 𝑑𝑖+1 from the distribution of possible days for the next 
round based on possible experts sampled in the pool conditioned on 
entire history

𝑑1 𝑑2 𝑑3 𝑑4

“BAD” “BAD” “BAD” “GOOD” 



Arbitrary Order Model Summary

• Algorithm: Repeatedly sample a pool of 𝑘 = ෨𝑂
𝑛

𝛿𝑇
experts and 

output the majority vote of the pool while deleting any expert with 
lower than 1 −

𝛿

8 log 𝑛
accuracy since it was sampled

• If the number of rounds is small, the pools must have done well so 
the overall regret is small

• The number of rounds cannot be large because at some point the 
best expert would have been sampled and retained



Questions?Format

❖ Part 1: Background

❖ Part 2: Lower Bound

❖ Part 3: Arbitrary Model

❖ Part 4: Random-Order Model



Random-Order Streams

• There exists an algorithm that uses 𝑂
𝑛

𝛿2𝑇
log2 𝑛 log

1

𝛿
space 

achieves expected regret 𝛿 >
8 log 𝑛

𝑇
in the random-order model

• We used majority vote of remaining experts in sampled pool

• Instead of removing experts, could just downweight them and run 
deterministic weighted majority

• Why not randomized weighted majority, i.e., multiplicative weights?

TAKING A STEP BACK



Multiplicative Weights Algorithm

• Theorem (Arora, Hazan, Kale 2012): Expected number of mistakes by 

the algorithm is at most 
ln 𝑛

𝜀
+ 1 + 𝜀 𝑀



Random-Order Streams

• Algorithm: Repeatedly sample a pool of 𝑘 = ෨𝑂
𝑛

𝛿2𝑇
experts and run 

multiplicative weights on pool, resample if the expected cost of the 
pool over 𝑡 time “is bad”

• Can compute this expected cost, so if it doesn’t follow the theory, it 
means you didn’t sample the best expert



Random-Order Streams

• Algorithm: Repeatedly sample a pool of 𝑘 = ෨𝑂
𝑛

𝛿2𝑇
experts and run 

multiplicative weights on pool, resample if the expected cost of the 
pool over 𝑡 time “is bad”.

• If the number of rounds is small, the pools must have done well so 
the overall regret is small

• The number of rounds cannot be large because at some point the 
best expert would have been sampled and retained

WANT TO SHOW



Random-Order Idea
• Enforce 

• (1) the algorithm will do well when the pool contains the best expert 

• (2) we will never delete the pool if it contains the best expert

• The number of rounds cannot be large because at some point the 
best expert would have been sampled and retained

“GOOD” “GOOD” “GOOD” “GOOD” 



Summary of Multiplicative Weights Algorithm

• There exists an algorithm that uses 𝑂
𝑛

𝛿2𝑇
log2 𝑛 space and achieves 

regret 𝛿 >
16 log2 𝑛

𝑇
in the random-order model (assuming the 

number of mistakes 𝑀 made by the best expert is known)

• Remove the assumption that 𝑀 is known by using random-order 
property plus prefix of the stream to estimate 𝑀



Removing the Assumption on 𝑀

• Do a binary search for 
𝑀

𝑇
with 𝛾 as the running estimate

• Proceed through ℓ = 2 log
1

𝛿
epochs, each of length 

𝛿𝑇

ℓ

• Run previous algorithm on with estimated cost 𝛾 ⋅
𝛿𝑇

ℓ
and target 

regret 𝑂 1 until we have a (1 + 𝑂 𝛿 )-approximation of 
𝑀

𝑇
by 𝛾

• Since regret is lower, space usage increases by a factor of 𝑂 ℓ for 

𝛿 ≤
𝑀

𝑇



Summary of Random-Order Model

• Given 𝛿 >
16 log2 𝑛

𝑇
, there exists an algorithm in the random-order 

model that uses achieves expected regret 𝛿 and uses 𝑂
𝑛

𝛿2𝑇
log2 𝑛

space

• Generalizes to other sequential prediction algorithms!



Summary of Results

• Any algorithm that achieves 𝛿 <
1

2
regret with probability at least 

3

4
must use 

Ω
𝑛

𝛿2𝑇
space

• There exists an algorithm that uses 𝑂
𝑛

𝛿2𝑇
log2 𝑛 space in the random-order 

model

• For 𝑀 <
𝛿2𝑇

1280 log2𝑛
, there exists an algorithm that uses ෨𝑂

𝑛

𝛿𝑇
space and 

achieves regret 𝛿

• If the cost is between 0, 𝜌 , the regret is 𝜌𝛿 for both models

• Questions: tight bounds for arbitrary order streams? 

how general is this framework beyond the experts problem?
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