
Memory Bounds for the
Expert Problem

Vaidehi Srinivas

David P. Woodruff

Ziyu (Neil) Xu

Samson Zhou

a fundamental problem of sequential prediction

Day You Actual outcome

1

2

3

4

?

?

?

?

Prediction with Expert Advice

Quantifying Performance

Make no distributional assumptions

We judge our algorithm based on regret.

Definition (Regret)

of mistakes algorithm makes more than the best expert

of days

a fundamental problem of sequential prediction

Day You Actual outcome

1

2

3

4

?

?

?

?

Prediction with Expert Advice

a fundamental problem of sequential prediction

Day You Actual outcome

1

2

3

4

Prediction with Expert Advice

Algorithm
makes 2
mistakes
Best expert
makes 1
mistake

1/4 Regret

The Online Learning with Experts Problem

• 𝑛 experts who decide either {0,1} on each of 𝑇 days (𝑛 ≫ 𝑇)

• Algorithm takes advice from experts and predict either {0,1} on each
day

• Algorithm sees the outcome, which is either {0,1}, of each day and
can use this information on future days

• The cost of the algorithm is the number of incorrect predictions

• Regret is (# of mistakes we make - 𝑀)/𝑇, i.e., the amortized
additional cost of the algorithm compared to the cost 𝑀 of the best
expert

Applications of the Experts Problem

• Ensemble learning, e.g., AdaBoost

• Forecast and portfolio optimization

• Special case of online convex optimization

Day Algorithm Actual outcome

1

2

3

4

weights 1 1 1 1

1 1/2 1 1

1 1/2 1/2 1

1/2 1/2 1/4 1/2

1/2 1/4 1/4 1/4

Weighted Majority (Littlestone, Warmuth 89)

Day Algorithm Actual outcome

1

2

3

4

weights 1 1 1 1

1 𝟏 − 𝜺 1 1

1 1

Weighted Majority (Littlestone, Warmuth 89)

𝟏 − 𝜺 𝟏 − 𝜺

𝟏 − 𝜺

𝟏 − 𝜺

𝟏 − 𝜺 𝟏 − 𝜺𝟏 − 𝜺 𝟐

𝟏 − 𝜺 𝟐 𝟏 − 𝜺 𝟐 𝟏 − 𝜺 𝟐

Theorem (Deterministic Weighted Majority)

where M is the # of mistakes the best expert makes, n is # of experts.

of mistakes by
deterministic weighted

majority
≤ (2+휀)M +

2
ln n

Guarantee for Weighted Majority

● 1 − 휀 𝑀 ≤ sum of the weights ≤ 1 −
2

𝑚
𝑛

Theorem (Randomized Weighted Majority, i.e, Multiplicative Weights)

For ε > 0, can construct algorithm A such that

E[# of mistakes by A] ≤ (1 + ε) M +
O(ln n)

ε

Guarantee for Weighted Majority

Theorem (Deterministic Weighted Majority)

where M is the # of mistakes the best expert makes, n is # of experts.

of mistakes by
deterministic weighted

majority
≤ (2+휀)M +

2
ln n

Previous Work

• Weighted majority algorithm down-weights each expert that is
incorrect on each day and selects the weighted majority as the output

• Weighted majority algorithm gets (2 + 휀)𝑀 +
𝑂(log 𝑛)

total mistakes

• Randomized weighted majority algorithm randomly follows each
expert with probability proportional to the weight of the expert

• Randomized weighted majority algorithm achieves regret 𝑂
log 𝑛

𝑇

Memory Bounds for the Expert Problem

• These algorithms require Ω(𝑛) memory to maintain weights for each
expert – but what if 𝑛 is very large and we want sublinear space?

• Can use no memory and just randomly guess each day – still good if
the best expert makes a lot of mistakes but bad if the best expert
makes very few mistakes

• What are the space/accuracy tradeoffs for the online learning with
experts problem?

wake up with
no memory

except a note
from your past

self
(at most s bits)

see expert predictions for today make a prediction see outcome

write a note to your future self
(at most s bits)

fall asleep and forget everything

repeat

The Streaming Model

Definition (Arbitrary Order Model)

An adversary chooses a worst-case ordering of the days and outcomes in the stream

beforehand.

Definition (Random Order Model)

An adversary chooses worst-case ordering of the outcomes, then the order of days is

randomly shuffled.

The complete sequence of T days is the data stream.

(prediction1, outcome1), . . . , (predictionT, outcomeT)

The Streaming Model

A Natural Idea

• What if we just identify the best expert?

• Find the best expert so far, follow it until a new best expert emerges,
identify the new best expert, find it, repeat
• Doesn’t even work in offline setting

• Could do weighted majority, but uses Ω 𝑛 space

Set Disjointness Communication Problem

• Set disjointness communication problem: Alice has a set 𝑋 ∈ 0,1 𝑛

and Bob has a set 𝑌 ∈ 0,1 𝑛 and the promise is that either 𝑋 ∩ 𝑌 =
0 or 𝑋 ∩ 𝑌 = 1

• Set disjointness requires total (randomized) communication Ω 𝑛

𝑋 𝑌 𝑋 𝑌

Reduction

• Holds even for 2 days (can copy each
day T/2 times if desired)

• Alice creates a stream 𝑆 so that each
element of 𝑋 is an expert that is
correct on day 1

• Bob creates a stream 𝑆′ so that each
element of 𝑌 is an expert that is
correct on day 2

Day
Algorithm

1

2

Expert 1 Expert 3 Expert 6

Reduction

• Alice runs streaming algorithm 𝐴 on the stream 𝑆 created by their set 𝑋
and passes the state of 𝐴 to Bob, who continues running the algorithm
on the stream 𝑆′ created by their set 𝑌

• At the end, 𝐴 will output an expert 𝑖 ∈ [𝑛], and then Alice and Bob will
check whether 𝑋 ∩ 𝑌 = 𝑖

• Solves set disjointness* so 𝐴 must use Ω 𝑛 space

• Not end of story: low-regret algorithm need not find best expert, even
if second best expert makes half as many mistakes

Our Results (I)

• Any algorithm that achieves 𝛿 <
1

2
regret with probability at least

3

4

must use Ω
𝑛

𝛿2𝑇
space

• Lower bound holds for arbitrary-order, random-order, and i.i.d.
streams

Our Results (II)

• There exists an algorithm that uses 𝑂
𝑛

𝛿2𝑇
log2 𝑛 log

1

𝛿
space and achieves

expected regret 𝛿 >
8 log 𝑛

𝑇
in the random-order model

• The algorithm is almost-tight with the space lower bounds and oblivious to
𝑀, the number of mistakes made by the best-expert

• Can achieve regret almost matching randomized weighted majority

• Result extends to general costs in [0, 𝜌] with expected regret 𝜌𝛿

Our Results (III)

• For 𝑀 <
𝛿2𝑇

1280 log2𝑛
and 𝛿 >

128 log2 𝑛

𝑇
, there exists an algorithm

that uses ෨𝑂
𝑛

𝛿𝑇
space and achieves regret 𝛿 with probability

4

5

• The algorithm *beats* the lower bounds, showing that the hardness
comes from the best expert making a “lot” of mistakes

• Can achieve regret almost matching randomized weighted majority

• The algorithm oblivious to 𝑀, the number of mistakes made by the
best expert

Questions?Format

❖ Part 1: Background

❖ Part 2: Lower Bound

❖ Part 3: Arbitrary Model

❖ Part 4: Random-Order Model

Lower Bound

• Any algorithm that achieves 𝛿 <
1

2
(average) regret with probability

at least
3

4
must use Ω

𝑛

𝛿2𝑇
space

• Lower bound holds for arbitrary-order, random-order, and i.i.d.
streams

Communication Problem for Lower Bound

• Distributed detection problem

• 휀-DIFFDIST problem: 𝑇 players each hold 𝑛 bits and must distinguish
between two cases.

• Case 1: (NO) Every index for every player is drawn i.i.d. from a fair

coin, i.e., a Bernoulli distribution with parameter
1

2

• Case 2: (YES) An index 𝐿 ∈ [𝑛] is selected arbitrarily. The 𝐿-th bit of
each player is chosen i.i.d. from a Bernoulli distribution with

parameter
1

2
+ 휀 and all the other bits are chosen i.i.d. from a fair coin

Communication Problem for Lower Bound

H T H T H

T H H H H

H H T H T

H T H T T

H T H T H

T H H H H

H H T H T

H H H T T

YESNO

휀-DIFFDIST Problem

• 휀-DIFFDIST problem: 𝑇 players each hold 𝑛 bits and must distinguish
between two cases.

• Protocol: Randomly choose ෨𝑂
1
2 players and send all bits of those

players, see whether some bit has bias at least
2

Communication Problem for Lower Bound

H T H T H

T H H H H

H H T H T

H T H T T

H T H T H

T H H H H

H H T H T

H H H T T

YESNO

휀-DIFFDIST Problem

• 휀-DIFFDIST problem: 𝑇 players each hold 𝑛 bits and must distinguish
between two cases.

• Protocol: Randomly choose ෨𝑂
1
2 players and send all bits of those

players, see whether some bit has bias at least
2

• Communication of protocol: ෨𝑂
𝑛
2

• Theorem: Ω
𝑛
2 communication is necessary

휀-DIFFDIST Problem

• Theorem: Ω
𝑛
2 communication is necessary

• Fact: Ω
1
2 samples are necessary to distinguish between a fair coin,

i.e., a Bernoulli distribution with parameter
1

2
and a coin with bias 휀

• Intuition: players sort of need to solve the single coin problem on
each of the 𝑛 coins (actually just need the OR)

휀-DIFFDIST Problem

• Formally, all the coins are independent in the NO distribution

• Can use a direct sum theorem for OR [BJKS04], so reduces to showing
high information cost under NO distribution on a single coin

• Ω
1
2 information necessary to distinguish between a single fair

coin, i.e., a Bernoulli distribution with parameter
1

2
and a coin with

bias 휀, even when information is measured under the NO distribution

• Uses strong data processing inequality [ZDJW13, GMN14, BGM+16]

휀-DIFFDIST Summary

• 휀-DIFFDIST problem: 𝑇 players each hold 𝑛 bits and must distinguish
between two cases.

• Case 1: (NO) Every index for every player is drawn i.i.d. from a fair

coin, i.e., a Bernoulli distribution with parameter
1

2

• Case 2: (YES) An index 𝐿 ∈ [𝑛] is selected arbitrarily. The 𝐿-th bit of
each player is chosen i.i.d. from a Bernoulli distribution with

parameter
1

2
+ 휀 and all the other bits are chosen i.i.d. from a fair coin

• Fact: Ω
𝑛
2 communication is necessary to solve the problem

Reduction Intuition

• Each player in the 휀-DIFFDIST Problem corresponds to a different day

• Each bit in the 휀-DIFFDIST Problem corresponds to a different expert

• Reduction: distinguishing whether there exists a slightly biased
random bit corresponds to distinguishing whether there exists a
slightly “better” expert

Day You Actual outcome

1

2

3

4

Reduction Challenge

Reduction

• We would like to use an online learning with experts algorithm for

solving 휀-DIFFDIST Problem for 휀 = 𝑂 𝛿 by sampling Ω
1

𝛿2
players

• However, an algorithm with bad guarantees can still “luckily” have
good cost

• Use masking argument – outcome of each day is masked by an
independent fair coin flip on each day (expert advice also flipped)

Day YouActual outcome

1

2

3

4

Reduction Challenge

Actual outcome

MASK=0

MASK=1

MASK=1

MASK=1

Reduction

• For constant 𝛿 <
1

2
, if there is no biased coin, no expert will do better

than
1

2
+

𝛿

3
with probability at least

1

4

• For constant 𝛿 <
1

2
, if there is a biased coin, an expert will do better

than
1

2
+

2𝛿

3
with probability at least

1

4

Reduction Summary

• The online learning with experts algorithm with regret 𝛿 will be able

to solve the 휀-DIFFDIST Problem with probability at least
3

4
for 휀 =

𝑂 𝛿 . Must use Ω
𝑛

𝛿2
total communication

• Any algorithm that achieves 𝛿 <
1

2
regret with probability at least

3

4

must use Ω
𝑛

𝛿2𝑇
space

Questions?Format

❖ Part 1: Background

❖ Part 2: Lower Bound

❖ Part 3: Arbitrary Model

❖ Part 4: Random-Order Model

No Mistake Regime

• For 𝑀 <
𝛿2𝑇

1280 log2𝑛
and 𝛿 >

128 log2 𝑛

𝑇
, there exists an algorithm that

uses ෨𝑂
𝑛

𝛿𝑇
space and achieves regret 𝛿 with probability

4

5

• We know there is a really accurate expert. What if we iteratively pick
“pools” of experts and delete them if they run “poorly”?

Day You Actual outcome

1

2

3

4

Reduction Problem

No Mistake Regime

• If iteratively pick pool of next 𝑘 experts (“rounds”) and output the
majority vote of the pool while deleting any incorrect expert, each
pool will have at most 𝑂(log 𝑘) errors

• If best expert makes no mistakes, use
𝑛

𝑘
pools to achieve regret 𝛿𝑇

means setting 𝑘 = ෨𝑂
𝑛

𝛿𝑇

No Mistake Regime Summary

• Algorithm: Iteratively pick pool of next 𝑘 = ෨𝑂
𝑛

𝛿𝑇
experts (“rounds”)

and output the majority vote of the pool while deleting any incorrect
expert

• If the number of rounds is small, the pools must have done well so
the overall regret is small

• The number of rounds cannot be large because at some point the
best expert would have been sampled and retained

“Low-Mistake” Regime

• Algorithm: Iteratively pick pool of next 𝑘 = ෨𝑂
𝑛

𝛿𝑇
experts (“rounds”)

and output the majority vote of the pool while deleting any incorrect
expert

• If best expert makes 𝑀 mistakes, use
𝑛𝑀

𝑘
pools to achieve regret 𝛿𝑇

means setting 𝑘 = ෨𝑂
𝑛𝑀

𝛿𝑇
, but this is too large!

“Low-Mistake” Fix-Its

• Fix #1: Randomly sample pools of experts instead of iteratively
picking pools

• Problem #1: Cannot guarantee that the best expert will be retained

• Fix #2: Delete experts that have erred with fraction at least 1 − 𝛿

• Problem #2: “Build-up” of errors

A Really Bad Case Study

• Suppose 𝛿 =
1

2

• Example shows that the pool of
𝑘 = 8 sampled experts can make
roughly 𝑇 − 𝑇/𝑘 errors

“Low-Mistake” Regime

• Algorithm: Repeatedly sample a pool of 𝑘 = ෨𝑂
𝑛

𝛿𝑇
experts and

output the majority vote of the pool while deleting any expert with

lower than 1 −
𝛿

8 log 𝑛
accuracy since it was sampled

• If the number of rounds is small, the pools must have done well so
the overall regret is small

• The number of rounds cannot be large because at some point the
best expert would have been sampled and retained

WANT TO SHOW

“Low-Mistake” Regime: First Property

• Algorithm: Repeatedly sample a pool of 𝑘 = ෨𝑂
𝑛

𝛿𝑇
experts and

output the majority vote of the pool while deleting any expert with

lower than 1 −
𝛿

8 log 𝑛
accuracy since it was sampled

• Lemma: For 𝛿 >
128 log2 𝑛

𝑇
, a pool that is used for 𝑡 days can only

make
𝑡𝛿

2
+ 4 log 𝑛 mistakes

• For the algorithm to make 𝑇𝛿 mistakes, need at least
𝑇𝛿

8 log 𝑛
rounds

“Low-Mistake” Regime: Second Property

• For the algorithm to make 𝑇𝛿 mistakes, need at least
𝑇𝛿

8 log 𝑛
rounds

• “BAD” day: the best expert is deleted by the pool if it is sampled on
that day

• BAD ≤
8𝑀log 𝑛

𝛿

X X X X X X

“Low-Mistake” Regime: Second Property

• For the algorithm to make 𝑇𝛿 mistakes, need at least
𝑇𝛿

8 log 𝑛
rounds

• A bad algorithm must not sample the best expert on a “GOOD” day

“BAD” “BAD” “BAD” “GOOD”

“Low-Mistake” Regime: Second Property

• For the algorithm to make 𝑇𝛿 mistakes, need at least
𝑇𝛿

8 log 𝑛
rounds

• Must avoid sampling the best expert on Ω
𝑇𝛿

log 𝑛
rounds

• 𝑂
𝑛 log2 𝑛

𝛿𝑇
experts sampled in each round → low probability

Analysis
• Define a set of random variables 𝑑1, 𝑑2, … for each round’s day

• Given 𝑑𝑖, draw 𝑑𝑖+1 from the distribution of possible days for the next
round based on possible experts sampled in the pool conditioned on
entire history

𝑑1 𝑑2 𝑑3 𝑑4

“BAD” “BAD” “BAD” “GOOD”

Arbitrary Order Model Summary

• Algorithm: Repeatedly sample a pool of 𝑘 = ෨𝑂
𝑛

𝛿𝑇
experts and

output the majority vote of the pool while deleting any expert with
lower than 1 −

𝛿

8 log 𝑛
accuracy since it was sampled

• If the number of rounds is small, the pools must have done well so
the overall regret is small

• The number of rounds cannot be large because at some point the
best expert would have been sampled and retained

Questions?Format

❖ Part 1: Background

❖ Part 2: Lower Bound

❖ Part 3: Arbitrary Model

❖ Part 4: Random-Order Model

Random-Order Streams

• There exists an algorithm that uses 𝑂
𝑛

𝛿2𝑇
log2 𝑛 log

1

𝛿
space

achieves expected regret 𝛿 >
8 log 𝑛

𝑇
in the random-order model

• We used majority vote of remaining experts in sampled pool

• Instead of removing experts, could just downweight them and run
deterministic weighted majority

• Why not randomized weighted majority, i.e., multiplicative weights?

TAKING A STEP BACK

Multiplicative Weights Algorithm

• Theorem (Arora, Hazan, Kale 2012): Expected number of mistakes by

the algorithm is at most
ln 𝑛

+ 1 + 휀 𝑀

Random-Order Streams

• Algorithm: Repeatedly sample a pool of 𝑘 = ෨𝑂
𝑛

𝛿2𝑇
experts and run

multiplicative weights on pool, resample if the expected cost of the
pool over 𝑡 time “is bad”

• Can compute this expected cost, so if it doesn’t follow the theory, it
means you didn’t sample the best expert

Random-Order Streams

• Algorithm: Repeatedly sample a pool of 𝑘 = ෨𝑂
𝑛

𝛿2𝑇
experts and run

multiplicative weights on pool, resample if the expected cost of the
pool over 𝑡 time “is bad”.

• If the number of rounds is small, the pools must have done well so
the overall regret is small

• The number of rounds cannot be large because at some point the
best expert would have been sampled and retained

WANT TO SHOW

Random-Order Idea
• Enforce

• (1) the algorithm will do well when the pool contains the best expert

• (2) we will never delete the pool if it contains the best expert

• The number of rounds cannot be large because at some point the
best expert would have been sampled and retained

“GOOD” “GOOD” “GOOD” “GOOD”

Summary of Multiplicative Weights Algorithm

• There exists an algorithm that uses 𝑂
𝑛

𝛿2𝑇
log2 𝑛 space and achieves

regret 𝛿 >
16 log2 𝑛

𝑇
in the random-order model (assuming the

number of mistakes 𝑀 made by the best expert is known)

• Remove the assumption that 𝑀 is known by using random-order
property plus prefix of the stream to estimate 𝑀

Removing the Assumption on 𝑀

• Do a binary search for
𝑀

𝑇
with 𝛾 as the running estimate

• Proceed through ℓ = 2 log
1

𝛿
epochs, each of length

𝛿𝑇

ℓ

• Run previous algorithm on with estimated cost 𝛾 ⋅
𝛿𝑇

ℓ
and target

regret 𝑂 1 until we have a (1 + 𝑂 𝛿)-approximation of
𝑀

𝑇
by 𝛾

• Since regret is lower, space usage increases by a factor of 𝑂 ℓ for

𝛿 ≤
𝑀

𝑇

Summary of Random-Order Model

• Given 𝛿 >
16 log2 𝑛

𝑇
, there exists an algorithm in the random-order

model that uses achieves expected regret 𝛿 and uses 𝑂
𝑛

𝛿2𝑇
log2 𝑛

space

• Generalizes to other sequential prediction algorithms!

Summary of Results

• Any algorithm that achieves 𝛿 <
1

2
regret with probability at least

3

4
must use

Ω
𝑛

𝛿2𝑇
space

• There exists an algorithm that uses 𝑂
𝑛

𝛿2𝑇
log2 𝑛 space in the random-order

model

• For 𝑀 <
𝛿2𝑇

1280 log2𝑛
, there exists an algorithm that uses ෨𝑂

𝑛

𝛿𝑇
space and

achieves regret 𝛿

• If the cost is between 0, 𝜌 , the regret is 𝜌𝛿 for both models

• Questions: tight bounds for arbitrary order streams?

how general is this framework beyond the experts problem?

	Slide 1: Memory Bounds for the Expert Problem
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: The Online Learning with Experts Problem
	Slide 7: Applications of the Experts Problem
	Slide 8: Weighted Majority (Littlestone, Warmuth 89)
	Slide 9: Weighted Majority (Littlestone, Warmuth 89)
	Slide 10: Guarantee for Weighted Majority
	Slide 12: Guarantee for Weighted Majority
	Slide 14: Previous Work
	Slide 15: Memory Bounds for the Expert Problem
	Slide 16: The Streaming Model
	Slide 17: The Streaming Model
	Slide 19: A Natural Idea
	Slide 20: Set Disjointness Communication Problem
	Slide 21: Reduction
	Slide 22: Reduction
	Slide 25: Our Results (I)
	Slide 27: Our Results (II)
	Slide 29: Our Results (III)
	Slide 30: Questions?
	Slide 31: Lower Bound
	Slide 32: Communication Problem for Lower Bound
	Slide 33: Communication Problem for Lower Bound
	Slide 34: script epsilon-DIFFDIST Problem
	Slide 35: Communication Problem for Lower Bound
	Slide 36: script epsilon-DIFFDIST Problem
	Slide 37: script epsilon-DIFFDIST Problem
	Slide 38: script epsilon-DIFFDIST Problem
	Slide 40: script epsilon-DIFFDIST Summary
	Slide 41: Reduction Intuition
	Slide 43
	Slide 44: Reduction
	Slide 45
	Slide 46: Reduction
	Slide 47: Reduction Summary
	Slide 48: Questions?
	Slide 49: No Mistake Regime
	Slide 50
	Slide 51: No Mistake Regime
	Slide 52: No Mistake Regime Summary
	Slide 53: “Low-Mistake” Regime
	Slide 54: “Low-Mistake” Fix-Its
	Slide 55: A Really Bad Case Study
	Slide 56: “Low-Mistake” Regime
	Slide 57: “Low-Mistake” Regime: First Property
	Slide 58: “Low-Mistake” Regime: Second Property
	Slide 59: “Low-Mistake” Regime: Second Property
	Slide 60: “Low-Mistake” Regime: Second Property
	Slide 61: Analysis
	Slide 64: Arbitrary Order Model Summary
	Slide 65: Questions?
	Slide 66: Random-Order Streams
	Slide 70: Multiplicative Weights Algorithm
	Slide 71: Random-Order Streams
	Slide 72: Random-Order Streams
	Slide 73: Random-Order Idea
	Slide 74: Summary of Multiplicative Weights Algorithm
	Slide 76: Removing the Assumption on cap M
	Slide 77: Summary of Random-Order Model
	Slide 78: Summary of Results

