Memory Bounds for the Expert Problem

Vaidehi Srinivas

David P. Woodruff
Ziyu (Neil) Xu
Samson Zhou

Prediction with Expert Advice

a fundamental problem of sequential prediction

Day					You	Actual outcome
1	$=0_{i=1}^{s i n}$	ε	=0,	$=0_{1}^{3 / 2}$	$?$	=0~~
2			$=\int_{1}^{2 \pi}$		$?$	
3				$\text { - } 0_{1}^{3}$?	
4	$=10 \text { = }$		$=10$		$?$	$\underbrace{s, n}_{i=1}$

Quantifying Performance

Make no distributional assumptions
We judge our algorithm based on regret.

Definition (Regret)
\# of mistakes algorithm makes more than the best expert
\# of days

Prediction with Expert Advice

a fundamental problem of sequential prediction

Day					You	Actual outcome
1	$=0_{i=1}^{s i n}$	ε	=0,	$=0_{1}^{3 / 2}$	$?$	=0~~
2			$=\int_{1}^{2 \pi}$		$?$	
3				$\text { - } 0_{1}^{3}$?	
4	$=10 \text { = }$		$=10$		$?$	$\underbrace{s, n}_{i=1}$

Prediction with Expert Advice

a fundamental problem of sequential prediction

The Online Learning with Experts Problem

- n experts who decide either $\{0,1\}$ on each of T days ($n \gg T$)
- Algorithm takes advice from experts and predict either $\{0,1\}$ on each day
- Algorithm sees the outcome, which is either $\{0,1\}$, of each day and can use this information on future days
- The cost of the algorithm is the number of incorrect predictions
- Regret is (\# of mistakes we make - M)/T, i.e., the amortized additional cost of the algorithm compared to the cost M of the best expert

Applications of the Experts Problem

- Ensemble learning, e.g., AdaBoost
- Forecast and portfolio optimization
- Special case of online convex optimization

Weighted Majority (Littlestone, Warmuth 89)

weights Actual outcome

Weighted Majority (Littlestone, Warmuth 89)

weights

Guarantee for Weighted Majority

```
Theorem (Deterministic Weighted Majority)
    # of mistakes by
    deterministic weighted
        majority
        \leq (2+\varepsilon)M + \frac{2}{\varepsilon}}\operatorname{ln}
```

where M is the \# of mistakes the best expert makes, n is \# of experts.

- $(1-\varepsilon)^{M} \leq$ sum of the weights $\leq\left(1-\frac{\varepsilon}{2}\right)^{m} n$

Guarantee for Weighted Majority

```
Theorem (Deterministic Weighted Majority)
    # of mistakes by
    deterministic weighted
        majority
        \leq (2+\varepsilon)M + < 
```

where M is the \# of mistakes the best expert makes, n is \# of experts.

Theorem (Randomized Weighted Majority, i.e, Multiplicative Weights)

For $\varepsilon>0$, can construct algorithm A such that

$$
\mathrm{E}[\# \text { of mistakes by } A] \quad \leq(1+\varepsilon) M+\frac{\mathrm{O}(\ln n)}{\varepsilon}
$$

Previous Work

- Weighted majority algorithm down-weights each expert that is incorrect on each day and selects the weighted majority as the output
- Weighted majority algorithm gets $(2+\varepsilon) M+\frac{O(\log n)}{\varepsilon}$ total mistakes
- Randomized weighted majority algorithm randomly follows each expert with probability proportional to the weight of the expert
- Randomized weighted majority algorithm achieves regret $O\left(\sqrt{\frac{\log n}{T}}\right)$

Memory Bounds for the Expert Problem

- These algorithms require $\Omega(n)$ memory to maintain weights for each expert - but what if n is very large and we want sublinear space?
- Can use no memory and just randomly guess each day - still good if the best expert makes a lot of mistakes but bad if the best expert makes very few mistakes
- What are the space/accuracy tradeoffs for the online learning with experts problem?

The Streaming Model

The Streaming Model

The complete sequence of T days is the data stream.
(prediction $_{1}$, outcome $_{1}$), ... , prediction $_{T}$, outcome $_{T}$)

Definition (Arbitrary Order Model)

An adversary chooses a worst-case ordering of the days and outcomes in the stream beforehand.

Definition (Random Order Model)

An adversary chooses worst-case ordering of the outcomes, then the order of days is randomly shuffled.

A Natural Idea

- What if we just identify the best expert?
- Find the best expert so far, follow it until a new best expert emerges, identify the new best expert, find it, repeat
- Doesn't even work in offline setting
- Could do weighted majority, but uses $\Omega(n)$ space

Set Disjointness Communication Problem

- Set disjointness communication problem: Alice has a set $X \in\{0,1\}^{n}$ and Bob has a set $Y \in\{0,1\}^{n}$ and the promise is that either $|X \cap Y|=$ 0 or $|X \cap Y|=1$

- Set disjointness requires total (randomized) communication $\Omega(n)$

Reduction

- Holds even for 2 days (can copy each

Day day $\mathrm{T} / 2$ times if desired)

Algorithm

- Alice creates a stream S so that each element of X is an expert that is correct on day 1

- Bob creates a stream S^{\prime} so that each element of Y is an expert that is correct on day 2

Reduction

- Alice runs streaming algorithm A on the stream S created by their set X and passes the state of A to Bob, who continues running the algorithm on the stream S^{\prime} created by their set Y
- At the end, A will output an expert $i \in[n]$, and then Alice and Bob will check whether $X \cap Y=i$
- Solves set disjointness* so A must use $\Omega(n)$ space
- Not end of story: low-regret algorithm need not find best expert, even if second best expert makes half as many mistakes

Our Results (I)

- Any algorithm that achieves $\delta<\frac{1}{2}$ regret with probability at least $\frac{3}{4}$ must use $\Omega\left(\frac{n}{\delta^{2} T}\right)$ space
- Lower bound holds for arbitrary-order, random-order, and i.i.d. streams

Our Results (II)

- There exists an algorithm that uses $O\left(\frac{n}{\delta^{2} T} \log ^{2} n \log \frac{1}{\delta}\right)$ space and achieves expected regret $\delta>\sqrt{\frac{8 \log n}{T}}$ in the random-order model
- The algorithm is almost-tight with the space lower bounds and oblivious to M, the number of mistakes made by the best-expert
- Can achieve regret almost matching randomized weighted majority
- Result extends to general costs in $[0, \rho]$ with expected regret $\rho \delta$

Our Results (III)

- For $M<\frac{\delta^{2} T}{1280 \log ^{2} n}$ and $\delta>\sqrt{\frac{128 \log ^{2} n}{T}}$, there exists an algorithm that uses $\tilde{O}\left(\frac{n}{\delta T}\right)$ space and achieves regret δ with probability $\frac{4}{5}$
- The algorithm *beats* the lower bounds, showing that the hardness comes from the best expert making a "lot" of mistakes
- Can achieve regret almost matching randomized weighted majority
- The algorithm oblivious to M, the number of mistakes made by the best expert

Format

Questions?

* Part 1: Background
* Part 2: Lower Bound
* Part 3: Arbitrary Model
* Part 4: Random-Order Model

Lower Bound

- Any algorithm that achieves $\delta<\frac{1}{2}$ (average) regret with probability at least $\frac{3}{4}$ must use $\Omega\left(\frac{n}{\delta^{2} T}\right)$ space
- Lower bound holds for arbitrary-order, random-order, and i.i.d. streams

Communication Problem for Lower Bound

- Distributed detection problem
- ε-DIFFDIST problem: T players each hold n bits and must distinguish between two cases.
- Case 1: (NO) Every index for every player is drawn i.i.d. from a fair coin, i.e., a Bernoulli distribution with parameter $\frac{1}{2}$
- Case 2: (YES) An index $L \in[n]$ is selected arbitrarily. The L-th bit of each player is chosen i.i.d. from a Bernoulli distribution with parameter $\frac{1}{2}+\varepsilon$ and all the other bits are chosen i.i.d. from a fair coin

Communication Problem for Lower Bound

ε-DIFFDIST Problem

- ε-DIFFDIST problem: T players each hold n bits and must distinguish between two cases.
- Protocol: Randomly choose $\tilde{O}\left(\frac{1}{\varepsilon^{2}}\right)$ players and send all bits of those players, see whether some bit has bias at least $\frac{\varepsilon}{2}$

Communication Problem for Lower Bound

ε-DIFFDIST Problem

- ε-DIFFDIST problem: T players each hold n bits and must distinguish between two cases.
- Protocol: Randomly choose $\tilde{O}\left(\frac{1}{\varepsilon^{2}}\right)$ players and send all bits of those players, see whether some bit has bias at least $\frac{\varepsilon}{2}$
- Communication of protocol: $\tilde{O}\left(\frac{n}{\varepsilon^{2}}\right)$
- Theorem: $\Omega\left(\frac{n}{\varepsilon^{2}}\right)$ communication is necessary

ε-DIFFDIST Problem

- Theorem: $\Omega\left(\frac{n}{\varepsilon^{2}}\right)$ communication is necessary
- Fact: $\Omega\left(\frac{1}{\varepsilon^{2}}\right)$ samples are necessary to distinguish between a fair coin, i.e., a Bernoulli distribution with parameter $\frac{1}{2}$ and a coin with bias ε
- Intuition: players sort of need to solve the single coin problem on each of the n coins (actually just need the OR)

ε-DIFFDIST Problem

- Formally, all the coins are independent in the NO distribution
- Can use a direct sum theorem for OR [BJKSO4], so reduces to showing high information cost under NO distribution on a single coin
- $\Omega\left(\frac{1}{\varepsilon^{2}}\right)$ information necessary to distinguish between a single fair coin, i.e., a Bernoulli distribution with parameter $\frac{1}{2}$ and a coin with bias ε, even when information is measured under the NO distribution
- Uses strong data processing inequality [ZDJW13, GMN14, BGM+16]

ε-DIFFDIST Summary

- ε-DIFFDIST problem: T players each hold n bits and must distinguish between two cases.
- Case 1: (NO) Every index for every player is drawn i.i.d. from a fair coin, i.e., a Bernoulli distribution with parameter $\frac{1}{2}$
- Case 2: (YES) An index $L \in[n]$ is selected arbitrarily. The L-th bit of each player is chosen i.i.d. from a Bernoulli distribution with parameter $\frac{1}{2}+\varepsilon$ and all the other bits are chosen i.i.d. from a fair coin
- Fact: $\Omega\left(\frac{n}{\varepsilon^{2}}\right)$ communication is necessary to solve the problem

Reduction Intuition

- Each player in the ε-DIFFDIST Problem corresponds to a different day
- Each bit in the ε-DIFFDIST Problem corresponds to a different expert
- Reduction: distinguishing whether there exists a slightly biased random bit corresponds to distinguishing whether there exists a slightly "better" expert

Reduction Challenge

Day					You	Actual outcome
1	$=52_{1}^{2 \pi}$		$=\int_{1}^{2 \sim}$	$=0_{1}^{3 \pi}$	=0,	$=0_{1}^{2 \pi}$
2	ε	ε	$=0_{1}^{2 \pi}$		$\int_{10}^{2 \pi}$	
3				=0~~2		$=0_{1}^{3 n}$
4	$=0_{1}^{3 \pi}$		$\int_{11}^{2 \pi}$		-2~~2~	$-0_{1}^{2 \pi}$

Reduction

- We would like to use an online learning with experts algorithm for solving ε-DIFFDIST Problem for $\varepsilon=O(\delta)$ by sampling $\Omega\left(\frac{1}{\delta^{2}}\right)$ players
- However, an algorithm with bad guarantees can still "luckily" have good cost
- Use masking argument - outcome of each day is masked by an independent fair coin flip on each day (expert advice also flipped)

Reduction Challenge

Day				Actual outcome	You				Actual outcome	
1	$=0_{1}^{2 \pi}$		$=0_{1}^{25}$	$\int_{1}^{2 n}$	$\underbrace{2 n}_{1}$		$=0_{1}^{2 \pi}$			MASK=1
2		\sum_{i}		$=0_{1}^{2 \pi}$	$0_{1}^{2 \pi}$				$\underbrace{3}_{i=1}$	MASK=0
3	$\underbrace{2 \pi}_{=1}$			$=0_{1}^{3 \pi}$				$=0_{1}^{3} \sim$		MASK=1
4	$\int_{11}^{2 \pi}$		$=\int_{10}^{2 \pi}$	$=0_{1}^{2 \sim}$	$\underbrace{26}_{1}$		=2~~			MASK=1

Reduction

- For constant $\delta<\frac{1}{2}$, if there is no biased coin, no expert will do better than $\frac{1}{2}+\frac{\delta}{3}$ with probability at least $\frac{1}{4}$
- For constant $\delta<\frac{1}{2}$, if there is a biased coin, an expert will do better than $\frac{1}{2}+\frac{2 \delta}{3}$ with probability at least $\frac{1}{4}$

Reduction Summary

- The online learning with experts algorithm with regret δ will be able to solve the ε-DIFFDIST Problem with probability at least $\frac{3}{4}$ for $\varepsilon=$ $O(\delta)$. Must use $\Omega\left(\frac{n}{\delta^{2}}\right)$ total communication
- Any algorithm that achieves $\delta<\frac{1}{2}$ regret with probability at least $\frac{3}{4}$ must use $\Omega\left(\frac{n}{\delta^{2} T}\right)$ space

Format

Questions?

* Part 1: Background
* Part 2: Lower Bound
* Part 3: Arbitrary Model
* Part 4: Random-Order Model

No Mistake Regime

- For $M<\frac{\delta^{2} T}{1280 \log ^{2} n}$ and $\delta>\sqrt{\frac{128 \log ^{2} n}{T}}$, there exists an algorithm that uses $\tilde{O}\left(\frac{n}{\delta T}\right)$ space and achieves regret δ with probability $\frac{4}{5}$
- We know there is a really accurate expert. What if we iteratively pick "pools" of experts and delete them if they run "poorly"?

Reduction Problem

(

No Mistake Regime

- If iteratively pick pool of next k experts ("rounds") and output the majority vote of the pool while deleting any incorrect expert, each pool will have at most $O(\log k)$ errors
- If best expert makes no mistakes, use $\frac{n}{k}$ pools to achieve regret δT means setting $k=\tilde{O}\left(\frac{n}{\delta T}\right)$

No Mistake Regime Summary

- Algorithm: Iteratively pick pool of next $k=\tilde{O}\left(\frac{n}{\delta T}\right)$ experts ("rounds") and output the majority vote of the pool while deleting any incorrect expert
- If the number of rounds is small, the pools must have done well so the overall regret is small
- The number of rounds cannot be large because at some point the best expert would have been sampled and retained

"Low-Mistake" Regime

- Algorithm: Iteratively pick pool of next $k=\tilde{O}\left(\frac{n}{\delta T}\right)$ experts ("rounds") and output the majority vote of the pool while deleting any incorrect expert
- If best expert makes M mistakes, use $\frac{n M}{k}$ pools to achieve regret δT means setting $k=\tilde{O}\left(\frac{n M}{\delta T}\right)$, but this is too large!

"Low-Mistake" Fix-Its

- Fix \#1: Randomly sample pools of experts instead of iteratively picking pools
- Problem \#1: Cannot guarantee that the best expert will be retained
- Fix \#2: Delete experts that have erred with fraction at least $1-\delta$
- Problem \#2: "Build-up" of errors

A Really Bad Case Study

$\checkmark \checkmark$	Suppose $\delta=\frac{1}{2}$ - Example shows that the pool of $k=8$ sampled experts can make roughly $T-T / k$ errors
R	

"Low-Mistake" Regime

- Algorithm: Repeatedly sample a pool of $k=\tilde{O}\left(\frac{n}{\delta T}\right)$ experts and output the majority vote of the pool while deleting any expert with lower than $1-\frac{\delta}{8 \log n}$ accuracy since it was sampled

WANT TO SHOW

- If the number of rounds is small, the pools must have done well so the overall regret is small
- The number of rounds cannot be large because at some point the best expert would have been sampled and retained

"Low-Mistake" Regime: First Property

- Algorithm: Repeatedly sample a pool of $k=\tilde{O}\left(\frac{n}{\delta T}\right)$ experts and output the majority vote of the pool while deleting any expert with lower than $1-\frac{\delta}{8 \log n}$ accuracy since it was sampled
- Lemma: For $\delta>\sqrt{\frac{128 \log ^{2} n}{T}}$, a pool that is used for t days can only make $\frac{t \delta}{2}+4 \log n$ mistakes
- For the algorithm to make $T \delta$ mistakes, need at least $\frac{T \delta}{8 \log n}$ rounds

"Low-Mistake" Regime: Second Property

- For the algorithm to make $T \delta$ mistakes, need at least $\frac{T \delta}{8 \log n}$ rounds
- "BAD" day: the best expert is deleted by the pool if it is sampled on that day

- $|\mathrm{BAD}| \leq \frac{8 M \log n}{\delta}$

"Low-Mistake" Regime: Second Property

- For the algorithm to make $T \delta$ mistakes, need at least $\frac{T \delta}{8 \log n}$ rounds
- A bad algorithm must not sample the best expert on a "GOOD" day

"Low-Mistake" Regime: Second Property

- For the algorithm to make $T \delta$ mistakes, need at least $\frac{T \delta}{8 \log n}$ rounds
- Must avoid sampling the best expert on $\Omega\left(\frac{T \delta}{\log n}\right)$ rounds
- $O\left(\frac{n \log ^{2} n}{\delta T}\right)$ experts sampled in each round \rightarrow low probability

Analysis

- Define a set of random variables d_{1}, d_{2}, \ldots for each round's day
- Given d_{i}, draw d_{i+1} from the distribution of possible days for the next round based on possible experts sampled in the pool conditioned on entire history

Arbitrary Order Model Summary

- Algorithm: Repeatedly sample a pool of $k=\tilde{O}\left(\frac{n}{\delta T}\right)$ experts and output the majority vote of the pool while deleting any expert with lower than $1-\frac{\delta}{8 \log n}$ accuracy since it was sampled
- If the number of rounds is small, the pools must have done well so the overall regret is small
- The number of rounds cannot be large because at some point the best expert would have been sampled and retained

Format

Questions?

* Part 1: Background
* Part 2: Lower Bound
* Part 3: Arbitrary Model
* Part 4: Random-Order Model

Random-Order Streams

- There exists an algorithm that uses $O\left(\frac{n}{\delta^{2} T} \log ^{2} n \log \frac{1}{\delta}\right)$ space achieves expected regret $\delta>\sqrt{\frac{8 \log n}{T}}$ in the random-order model

TAKING A STEP BACK

- We used majority vote of remaining experts in sampled pool
- Instead of removing experts, could just downweight them and run deterministic weighted majority
- Why not randomized weighted majority, i.e., multiplicative weights?

Multiplicative Weights Algorithm

```
Algorithm 4 The multiplicative weights algorithm.
Input: Number \(n\) of experts, number \(T\) of rounds, parameter \(\varepsilon\)
    1: Initialize \(w_{i}^{(1)}=1\) for all \(i \in[n]\).
    2: for \(t \in[T]\) do
    3: \(\quad p_{i}^{(t)} \leftarrow \frac{w_{i}^{(t)}}{\sum_{i \in[n]} w_{i}^{(t)}}\)
    4: Follow the advice of expert \(i\) with probability \(p_{i}^{(t)}\).
    5: Let \(c_{i}^{(t)}\) be the cost for the decision of expert \(i \in[n]\).
    6: \(\quad w_{i}^{(t+1)} \leftarrow w_{i}^{(t)}\left(1-\varepsilon c_{i}^{(t)}\right)\)
    7: end for
```

- Theorem (Arora, Hazan, Kale 2012): Expected number of mistakes by the algorithm is at most $\frac{\ln n}{\varepsilon}+(1+\varepsilon) M$

Random-Order Streams

- Algorithm: Repeatedly sample a pool of $k=\tilde{O}\left(\frac{n}{\delta^{2} T}\right)$ experts and run multiplicative weights on pool, resample if the expected cost of the pool over t time "is bad"
- Can compute this expected cost, so if it doesn't follow the theory, it means you didn't sample the best expert

Random-Order Streams

- Algorithm: Repeatedly sample a pool of $k=\tilde{O}\left(\frac{n}{\delta^{2} T}\right)$ experts and run multiplicative weights on pool, resample if the expected cost of the pool over t time "is bad".

WANT TO SHOW

- If the number of rounds is small, the pools must have done well so the overall regret is small
- The number of rounds cannot be large because at some point the best expert would have been sampled and retained

Random-Order Idea

- Enforce
- (1) the algorithm will do well when the pool contains the best expert
- (2) we will never delete the pool if it contains the best expert
- The number of rounds cannot be large because at some point the best expert would have been sampled and retained

"GOOD"

"GOOD"
䢒
"GOOD"
23

Summary of Multiplicative Weights Algorithm

- There exists an algorithm that uses $O\left(\frac{n}{\delta^{2} T} \log ^{2} n\right)$ space and achieves regret $\delta>\sqrt{\frac{16 \log ^{2} n}{T}}$ in the random-order model (assuming the number of mistakes M made by the best expert is known)
- Remove the assumption that M is known by using random-order property plus prefix of the stream to estimate M

Removing the Assumption on M

- Do a binary search for $\frac{M}{T}$ with γ as the running estimate
- Proceed through $\ell=2 \log \frac{1}{\delta}$ epochs, each of length $\frac{\delta T}{\ell}$
- Run previous algorithm on with estimated cost $\gamma \cdot \frac{\delta T}{\ell}$ and target regret $O(1)$ until we have a $(1+O(\delta))$-approximation of $\frac{M}{T}$ by γ
- Since regret is lower, space usage increases by a factor of $O(\ell)$ for $\delta \leq \frac{M}{T}$

Summary of Random-Order Model

- Given $\delta>\sqrt{\frac{16 \log ^{2} n}{T}}$, there exists an algorithm in the random-order model that uses achieves expected regret δ and uses $O\left(\frac{n}{\delta^{2} T} \log ^{2} n\right)$ space
- Generalizes to other sequential prediction algorithms!

Summary of Results

- Any algorithm that achieves $\delta<\frac{1}{2}$ regret with probability at least $\frac{3}{4}$ must use $\Omega\left(\frac{n}{\delta^{2} T}\right)$ space
- There exists an algorithm that uses $O\left(\frac{n}{\delta^{2} T} \log ^{2} n\right)$ space in the random-order model
- For $M<\frac{\delta^{2} T}{1280 \log ^{2} n}$, there exists an algorithm that uses $\tilde{O}\left(\frac{n}{\delta T}\right)$ space and achieves regret δ
- If the cost is between $[0, \rho]$, the regret is $\rho \delta$ for both models
- Questions: tight bounds for arbitrary order streams?
how general is this framework beyond the experts problem?

