Memory Bounds for the Expert Problem

Vaidehi Srinivas David P. Woodruff Ziyu (Neil) Xu Samson Zhou

Prediction with Expert Advice

a fundamental problem of sequential prediction

Quantifying Performance

Make no distributional assumptions We judge our algorithm based on **regret**.

Definition (Regret)

of mistakes algorithm makes more than the best expert

of days

Prediction with Expert Advice

a fundamental problem of sequential prediction

Prediction with Expert Advice

a fundamental problem of sequential prediction

The Online Learning with Experts Problem

- *n* experts who decide either $\{0,1\}$ on each of *T* days $(n \gg T)$
- Algorithm takes advice from experts and predict either {0,1} on each day
- Algorithm sees the outcome, which is either {0,1}, of each day and can use this information on future days
- The cost of the algorithm is the number of incorrect predictions
- Regret is (# of mistakes we make M)/T, i.e., the amortized additional cost of the algorithm compared to the cost M of the best expert

Applications of the Experts Problem

• Ensemble learning, e.g., AdaBoost

• Forecast and portfolio optimization

• Special case of online convex optimization

Weighted Majority (Littlestone, Warmuth 89)

Weighted Majority (Littlestone, Warmuth 89)

Guarantee for Weighted Majority

Theorem (Deterministic Weighted Majority)

of mistakes by deterministic weighted majority

$$\leq (2+\varepsilon)M + \frac{2}{\varepsilon}\ln r$$

where *M* is the # of mistakes the best expert makes, *n* is # of experts.

•
$$(1-\varepsilon)^M \leq \text{sum of the weights} \leq \left(1-\frac{\varepsilon}{2}\right)^m n$$

Guarantee for Weighted Majority

Theorem (Deterministic Weighted Majority)

of mistakes by deterministic weighted majority

$$(2+\varepsilon)M + \frac{2}{\varepsilon}\ln r$$

where *M* is the # of mistakes the best expert makes, *n* is # of experts.

 \leq

Theorem (Randomized Weighted Majority, i.e, Multiplicative Weights)

For $\varepsilon > 0$, can construct algorithm A such that

$$E[\# \text{ of mistakes by } A] \leq (1 + \varepsilon) M + \frac{O(\ln \varepsilon)}{1 + \varepsilon}$$

n

Previous Work

• Weighted majority algorithm down-weights each expert that is incorrect on each day and selects the weighted majority as the output

• Weighted majority algorithm gets $(2 + \varepsilon)M + \frac{O(\log n)}{\varepsilon}$ total mistakes

- Randomized weighted majority algorithm randomly follows each expert with probability proportional to the weight of the expert
- Randomized weighted majority algorithm achieves regret *O*

$$\left(\sqrt{\frac{\log n}{T}}\right)$$

Memory Bounds for the Expert Problem

- These algorithms require $\Omega(n)$ memory to maintain weights for each expert but what if n is very large and we want sublinear space?
- Can use no memory and just randomly guess each day still good if the best expert makes a lot of mistakes but bad if the best expert makes very few mistakes
- What are the space/accuracy tradeoffs for the online learning with experts problem?

The Streaming Model

The Streaming Model

The complete sequence of *T* days is the **data stream**.

(prediction₁, outcome₁), . . . , (prediction_{τ}, outcome_{τ})

Definition (Arbitrary Order Model)

An adversary chooses a worst-case ordering of the days and outcomes in the stream

beforehand.

Definition (Random Order Model)

An adversary chooses worst-case ordering of the outcomes, <u>then</u> the order of days is randomly shuffled.

A Natural Idea

- What if we just identify the best expert?
- Find the best expert so far, follow it until a new best expert emerges, identify the new best expert, find it, repeat
 - Doesn't even work in offline setting
- Could do weighted majority, but uses $\Omega(n)$ space

Set Disjointness Communication Problem

• Set disjointness communication problem: Alice has a set $X \in \{0,1\}^n$ and Bob has a set $Y \in \{0,1\}^n$ and the promise is that either $|X \cap Y| = 0$ or $|X \cap Y| = 1$

• Set disjointness requires total (randomized) communication $\Omega(n)$

Reduction

- Holds even for 2 days (can copy each day T/2 times if desired)
- Alice creates a stream S so that each element of X is an expert that is correct on day 1
- Bob creates a stream S' so that each element of Y is an expert that is correct on day 2

Expert 1 Expert 3 Expert 6 Day Algorithm

1

2

Reduction

- Alice runs streaming algorithm A on the stream S created by their set X and passes the state of A to Bob, who continues running the algorithm on the stream S' created by their set Y
- At the end, A will output an expert $i \in [n]$, and then Alice and Bob will check whether $X \cap Y = i$
- Solves set disjointness* so A must use $\Omega(n)$ space
- Not end of story: low-regret algorithm need not find best expert, even if second best expert makes half as many mistakes

Our Results (I)

- Any algorithm that achieves $\delta < \frac{1}{2}$ regret with probability at least $\frac{3}{4}$ must use $\Omega\left(\frac{n}{\delta^2 T}\right)$ space
- Lower bound holds for arbitrary-order, random-order, and i.i.d. streams

Our Results (II)

- There exists an algorithm that uses $O\left(\frac{n}{\delta^2 T}\log^2 n\log\frac{1}{\delta}\right)$ space and achieves expected regret $\delta > \sqrt{\frac{8\log n}{T}}$ in the random-order model
- The algorithm is almost-tight with the space lower bounds and oblivious to *M*, the number of mistakes made by the best-expert
- Can achieve regret almost matching randomized weighted majority
- Result extends to general costs in $[0, \rho]$ with expected regret $\rho\delta$

Our Results (III)

• For $M < \frac{\delta^2 T}{1280 \log^2 n}$ and $\delta > \sqrt{\frac{128 \log^2 n}{T}}$, there exists an algorithm that uses $\tilde{O}\left(\frac{n}{\delta T}\right)$ space and achieves regret δ with probability $\frac{4}{5}$

- The algorithm *beats* the lower bounds, showing that the hardness comes from the best expert making a "lot" of mistakes
- Can achieve regret almost matching randomized weighted majority
- The algorithm oblivious to M, the number of mistakes made by the best expert

Format

- Part 1: Background
- Part 2: Lower Bound
- Part 3: Arbitrary Model
- Part 4: Random-Order Model

Questions?

Lower Bound

- Any algorithm that achieves $\delta < \frac{1}{2}$ (average) regret with probability at least $\frac{3}{4}$ must use $\Omega\left(\frac{n}{\delta^2 T}\right)$ space
- Lower bound holds for arbitrary-order, random-order, and i.i.d. streams

Communication Problem for Lower Bound

- Distributed detection problem
- ε-DIFFDIST problem: T players each hold n bits and must distinguish between two cases.
- Case 1: (NO) Every index for every player is drawn i.i.d. from a fair coin, i.e., a Bernoulli distribution with parameter $\frac{1}{2}$
- Case 2: (YES) An index $L \in [n]$ is selected arbitrarily. The L-th bit of each player is chosen i.i.d. from a Bernoulli distribution with parameter $\frac{1}{2} + \varepsilon$ and all the other bits are chosen i.i.d. from a fair coin

Communication Problem for Lower Bound

- ε-DIFFDIST problem: T players each hold n bits and must distinguish between two cases.
- Protocol: Randomly choose $\tilde{O}\left(\frac{1}{\epsilon^2}\right)$ players and send all bits of those players, see whether some bit has bias at least $\frac{\epsilon}{2}$

Communication Problem for Lower Bound

- ε-DIFFDIST problem: T players each hold n bits and must distinguish between two cases.
- Protocol: Randomly choose $\tilde{O}\left(\frac{1}{\varepsilon^2}\right)$ players and send all bits of those players, see whether some bit has bias at least $\frac{\varepsilon}{2}$
- Communication of protocol: $\tilde{O}\left(\frac{n}{\varepsilon^2}\right)$

• Theorem:
$$\Omega\left(\frac{n}{\epsilon^2}\right)$$
 communication is necessary

- Theorem: $\Omega\left(\frac{n}{\epsilon^2}\right)$ communication is necessary
- Fact: $\Omega\left(\frac{1}{\epsilon^2}\right)$ samples are necessary to distinguish between a fair coin, i.e., a Bernoulli distribution with parameter $\frac{1}{2}$ and a coin with bias ϵ
- Intuition: players sort of need to solve the single coin problem on each of the *n* coins (actually just need the OR)

- Formally, all the coins are independent in the NO distribution
- Can use a direct sum theorem for OR [BJKS04], so reduces to showing high information cost under NO distribution on a single coin
- $\Omega\left(\frac{1}{\epsilon^2}\right)$ information necessary to distinguish between a single fair coin, i.e., a Bernoulli distribution with parameter $\frac{1}{2}$ and a coin with bias ϵ , even when information is measured under the NO distribution
 - Uses strong data processing inequality [ZDJW13, GMN14, BGM+16]

ɛ-DIFFDIST Summary

- ε-DIFFDIST problem: T players each hold n bits and must distinguish between two cases.
- Case 1: (NO) Every index for every player is drawn i.i.d. from a fair coin, i.e., a Bernoulli distribution with parameter $\frac{1}{2}$
- Case 2: (YES) An index $L \in [n]$ is selected arbitrarily. The L-th bit of each player is chosen i.i.d. from a Bernoulli distribution with parameter $\frac{1}{2} + \varepsilon$ and all the other bits are chosen i.i.d. from a fair coin
- Fact: $\Omega\left(\frac{n}{\epsilon^2}\right)$ communication is necessary to solve the problem

Reduction Intuition

- Each player in the *e*-DIFFDIST Problem corresponds to a different day
- Each bit in the *e*-DIFFDIST Problem corresponds to a different expert
- Reduction: distinguishing whether there exists a slightly biased random bit corresponds to distinguishing whether there exists a slightly "better" expert

Reduction Challenge

Reduction

- We would like to use an online learning with experts algorithm for solving ε -DIFFDIST Problem for $\varepsilon = O(\delta)$ by sampling $\Omega\left(\frac{1}{\delta^2}\right)$ players
- However, an algorithm with bad guarantees can still "luckily" have good cost
- Use masking argument outcome of each day is masked by an independent fair coin flip on each day (expert advice also flipped)

Reduction Challenge

Reduction

- For constant $\delta < \frac{1}{2}$, if there is no biased coin, no expert will do better than $\frac{1}{2} + \frac{\delta}{3}$ with probability at least $\frac{1}{4}$
- For constant $\delta < \frac{1}{2}$, if there is a biased coin, an expert will do better than $\frac{1}{2} + \frac{2\delta}{3}$ with probability at least $\frac{1}{4}$

Reduction Summary

- The online learning with experts algorithm with regret δ will be able to solve the ε -DIFFDIST Problem with probability at least $\frac{3}{4}$ for $\varepsilon = O(\delta)$. Must use $\Omega\left(\frac{n}{\delta^2}\right)$ total communication
- Any algorithm that achieves $\delta < \frac{1}{2}$ regret with probability at least $\frac{3}{4}$ must use $\Omega\left(\frac{n}{\delta^2 T}\right)$ space

Format

- Part 1: Background
- Part 2: Lower Bound
- Part 3: Arbitrary Model
- Part 4: Random-Order Model

Questions?

No Mistake Regime

• For
$$M < \frac{\delta^2 T}{1280 \log^2 n}$$
 and $\delta > \sqrt{\frac{128 \log^2 n}{T}}$, there exists an algorithm that uses $\tilde{O}\left(\frac{n}{\delta T}\right)$ space and achieves regret δ with probability $\frac{4}{5}$

• We know there is a really accurate expert. What if we iteratively pick "pools" of experts and delete them if they run "poorly"?

Reduction Problem

Actual outcome

No Mistake Regime

 If iteratively pick pool of next k experts ("rounds") and output the majority vote of the pool while deleting any incorrect expert, each pool will have at most O(log k) errors

• If best expert makes no mistakes, use $\frac{n}{k}$ pools to achieve regret δT means setting $k = \tilde{O}\left(\frac{n}{\delta T}\right)$

No Mistake Regime Summary

- Algorithm: Iteratively pick pool of next $k = \tilde{O}\left(\frac{n}{\delta T}\right)$ experts ("rounds") and output the majority vote of the pool while deleting any incorrect expert
- If the number of rounds is small, the pools must have done well so the overall regret is small
- The number of rounds cannot be large because at some point the best expert would have been sampled and retained

"Low-Mistake" Regime

- Algorithm: Iteratively pick pool of next $k = \tilde{O}\left(\frac{n}{\delta T}\right)$ experts ("rounds") and output the majority vote of the pool while deleting any incorrect expert
- If best expert makes M mistakes, use $\frac{nM}{k}$ pools to achieve regret δT means setting $k = \tilde{O}\left(\frac{nM}{\delta T}\right)$, but this is too large!

"Low-Mistake" Fix-Its

- Fix #1: Randomly sample pools of experts instead of iteratively picking pools
- Problem #1: Cannot guarantee that the best expert will be retained

- Fix #2: Delete experts that have erred with fraction at least 1δ
- Problem #2: "Build-up" of errors

A Really Bad Case Study

 \ast \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark

🛉 🗸 🗸 🗶 🗶

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

* 🗸 🗸 🗶 🗶

• Suppose $\delta = \frac{1}{2}$

• Example shows that the pool of k = 8 sampled experts can make roughly T - T/k errors

"Low-Mistake" Regime

- Algorithm: Repeatedly sample a pool of $k = \tilde{O}\left(\frac{n}{\delta T}\right)$ experts and output the majority vote of the pool while deleting any expert with lower than $1 \frac{\delta}{8 \log n}$ accuracy since it was sampled WANT TO SHOW
- If the number of rounds is small, the pools must have done well so the overall regret is small
- The number of rounds cannot be large because at some point the best expert would have been sampled and retained

"Low-Mistake" Regime: First Property

Algorithm: Repeatedly sample a pool of k = Õ (ⁿ/_{δT}) experts and output the majority vote of the pool while deleting any expert with lower than 1 - δ/(8 log n) accuracy since it was sampled
 Lemma: For δ > √(128 log² n)/T, a pool that is used for t days can only

make $\frac{t\delta}{2} + 4\log n$ mistakes

• For the algorithm to make $T\delta$ mistakes, need at least $\frac{T\delta}{8 \log n}$ rounds

"Low-Mistake" Regime: Second Property

- For the algorithm to make $T\delta$ mistakes, need at least $\frac{T\delta}{8 \log n}$ rounds
- "BAD" day: the best expert is deleted by the pool if it is sampled on that day

• $|\text{BAD}| \leq \frac{8M\log n}{\delta}$

"Low-Mistake" Regime: Second Property

- For the algorithm to make $T\delta$ mistakes, need at least $\frac{T\delta}{8 \log n}$ rounds
- A bad algorithm must not sample the best expert on a "GOOD" day

"Low-Mistake" Regime: Second Property

• For the algorithm to make $T\delta$ mistakes, need at least $\frac{T\delta}{8 \log n}$ rounds

• Must avoid sampling the best expert on
$$\Omega\left(\frac{T\delta}{\log n}\right)$$
 rounds

•
$$O\left(\frac{n\log^2 n}{\delta T}\right)$$
 experts sampled in each round \rightarrow low probability

Analysis

- Define a set of random variables d_1, d_2, \dots for each round's day
- Given d_i , draw d_{i+1} from the distribution of possible days for the next round based on possible experts sampled in the pool conditioned on entire history

Arbitrary Order Model Summary

- Algorithm: Repeatedly sample a pool of $k = \tilde{O}\left(\frac{n}{\delta T}\right)$ experts and output the majority vote of the pool while deleting any expert with lower than $1 \frac{\delta}{8 \log n}$ accuracy since it was sampled
- If the number of rounds is small, the pools must have done well so the overall regret is small
- The number of rounds cannot be large because at some point the best expert would have been sampled and retained

Format

- Part 1: Background
- Part 2: Lower Bound
- Part 3: Arbitrary Model
- Part 4: Random-Order Model

Questions?

Random-Order Streams

• There exists an algorithm that uses $O\left(\frac{n}{\delta^2 T}\log^2 n\log\frac{1}{\delta}\right)$ space achieves expected regret $\delta > \sqrt{\frac{8\log n}{T}}$ in the random-order model

TAKING A STEP BACK

- We used majority vote of remaining experts in sampled pool
- Instead of removing experts, could just downweight them and run deterministic weighted majority
- Why not randomized weighted majority, i.e., multiplicative weights?

Multiplicative Weights Algorithm

 $\begin{array}{l} \textbf{Algorithm 4 The multiplicative weights algorithm.} \\ \hline \textbf{Input: Number n of experts, number T of rounds, parameter ε 1: Initialize $w_i^{(1)} = 1$ for all $i \in [n]$. 2: for $t \in [T]$ do \\ 3: $p_i^{(t)} \leftarrow \frac{w_i^{(t)}}{\sum_{i \in [n]} w_i^{(t)}}$ \\ 4: Follow the advice of expert i with probability $p_i^{(t)}$. \\ 5: Let $c_i^{(t)}$ be the cost for the decision of expert $i \in [n]$. \\ 6: $w_i^{(t+1)} \leftarrow w_i^{(t)} \left(1 - \varepsilon c_i^{(t)}\right)$ \\ 7: end for \end{array}$

• Theorem (Arora, Hazan, Kale 2012): Expected number of mistakes by the algorithm is at most $\frac{\ln n}{\epsilon} + (1 + \epsilon)M$

Random-Order Streams

- Algorithm: Repeatedly sample a pool of $k = \tilde{O}\left(\frac{n}{\delta^2 T}\right)$ experts and run multiplicative weights on pool, resample if the expected cost of the pool over t time "is bad"
- Can compute this expected cost, so if it doesn't follow the theory, it means you didn't sample the best expert

Random-Order Streams

• Algorithm: Repeatedly sample a pool of $k = \tilde{O}\left(\frac{n}{\delta^2 T}\right)$ experts and run multiplicative weights on pool, resample if the expected cost of the pool over t time "is bad".

WANT TO SHOW

- If the number of rounds is small, the pools must have done well so the overall regret is small
- The number of rounds cannot be large because at some point the best expert would have been sampled and retained

Random-Order Idea

- Enforce
 - (1) the algorithm will do well when the pool contains the best expert
 - (2) we will never delete the pool if it contains the best expert
- The number of rounds cannot be large because at some point the best expert would have been sampled and retained

Summary of Multiplicative Weights Algorithm

• There exists an algorithm that uses $O\left(\frac{n}{\delta^2 T}\log^2 n\right)$ space and achieves regret $\delta > \sqrt{\frac{16\log^2 n}{T}}$ in the random-order model (assuming the number of mistakes M made by the best expert is known)

 Remove the assumption that *M* is known by using random-order property plus prefix of the stream to estimate *M*

Removing the Assumption on M

- Do a binary search for $\frac{M}{T}$ with γ as the running estimate
- Proceed through $\ell = 2 \log \frac{1}{\delta}$ epochs, each of length $\frac{\delta T}{\ell}$
- Run previous algorithm on with estimated cost $\gamma \cdot \frac{\delta T}{\ell}$ and target regret O(1) until we have a $(1 + O(\delta))$ -approximation of $\frac{M}{T}$ by γ
- Since regret is lower, space usage increases by a factor of $O(\ell)$ for $\delta \leq \frac{M}{T}$

Summary of Random-Order Model

- Given $\delta > \sqrt{\frac{16 \log^2 n}{T}}$, there exists an algorithm in the random-order model that uses achieves expected regret δ and uses $O\left(\frac{n}{\delta^2 T}\log^2 n\right)$ space
- Generalizes to other sequential prediction algorithms!

Summary of Results

- Any algorithm that achieves $\delta < \frac{1}{2}$ regret with probability at least $\frac{3}{4}$ must use $\Omega\left(\frac{n}{\delta^2 T}\right)$ space
- There exists an algorithm that uses $O\left(\frac{n}{\delta^2 T}\log^2 n\right)$ space in the random-order model
- For $M < \frac{\delta^2 T}{1280 \log^2 n}$, there exists an algorithm that uses $\tilde{O}\left(\frac{n}{\delta T}\right)$ space and achieves regret δ
- If the cost is between $[0, \rho]$, the regret is $\rho\delta$ for both models
- Questions: tight bounds for arbitrary order streams? how general is this framework beyond the experts problem?