Adversarially Robust Submodular Maximization under Knapsack Constraints

Dmitry Avdyukhin
Slobodan Mitrović
Grigory Yaroslavtsev
Samson Zhou
Submodular Functions

- Ground Set V (items, sets, vertices)
- Set function $f : 2^V \rightarrow \mathbb{R}$ with diminishing returns property

Oracle access to f. Given a subset $S \subseteq V$ returns $f(S)$.

\[
\forall A \subseteq B \subseteq V, e \notin B \\
f(A \cup \{e\}) - f(A) \geq f(B \cup \{e\}) - f(B)
\]
Submodular Functions

\[V = \{ \}

\[f(A \cup \{e\}) - f(A) \geq f(B \cup \{e\}) - f(B) \]
Applications of Submodular Functions

- Viral marketing [Kempe et al., 2003]
- Feature selection [Krause & Guestrin, 2005]
- Clustering [Narasimhan & Bilmes, 2005]
- Search result diversification [Agrawal et al., 2009]
- Recommender systems [El-Arini & Guestrin, 2011]
- Active learning [Golovin & Krause, 2011]
- Document summarization [Lin & Bilmes, 2011]
- Data subset selection [Wei, Iyer & Bilmes, 2015]
- etc
Clustering
Clustering

\[C(S) = \frac{1}{|V|} \sum_{e \in V} \min_{v \in S} d(e, v) \]

\[f(S) = C(\{e_0\}) - C(S \cup \{e_0\}) \]
Coverage

- $E = \{e_1, e_2, ..., e_n\}$
- $V \subseteq 2^E$
- $S = \{s_{i_1}, s_{i_2}, ..., s_{i_k}\} \in V$
- $f(S) = |\bigcup_{s_i \in S} s_i|$

f is a submodular function

$S^* = \arg \max_{|S| \leq k} f(S)$
Viral Marketing

- $E = \{p_1, p_2, \ldots, p_n\}$
- $V \subseteq 2^E$

$$S^* = \arg \max_{c(S) \leq K} f(S)$$

$$S = \{s_{i_1}, s_{i_2}, \ldots, s_{i_K}\} \in V$$

$$c(s_i) \geq 0$$
First Objective

Submodular maximization under cardinality constraint

\(f \) is submodular, monotone, and \(f(\emptyset) = 0 \)

Extract *small* representative subset out of a big dataset

\[
S^* = \arg \max_{|S| \leq k} f(S)
\]

Solving this problem exactly is NP-hard
Greedy [Nemhauser, Wolsey, Fisher, ’78]

\[V = \{ \text{food items} \} \]

Goal: Find \(S^* = \arg \max_{|S| \leq k} f(S) \)

Marginal gain:

\[f(\text{item}) \]

\[f(\text{food}) \]

\[f(\text{drink}) \]
Greedy [Nemhauser, Wolsey, Fisher, ‘78]

\[V = \{ \} \]

Goal: Find \(S^* = \arg \max_{|S| \leq k} f(S) \)

\[f(S) \geq (1 - 1/e)OPT \]
Algorithms performed sequentially.
Traditional

Algorithms performed sequentially.

Modern

distributed
Thresholding [Badanidiyuru, Mirzasoleiman, Karbasi, Krause, ‘14]

Stream:

\[f \left(\frac{\text{OPT}}{2k} \right) \geq \ ? \]
Thresholding [Badanidiyuru, Mirzasoleiman, Karbasi, Krause, ‘14]

Stream:

\[f(\text{Stream}) \geq \frac{\text{OPT}}{2k} \]
Thresholding [Badanidiyuru, Mirzasoleiman, Karbasi, Krause, ‘14]

Stream:

\[f(\text{Stream}) \geq \frac{\text{OPT}}{2k} \]
Thresholding [Badanidiyuru, Mirzasoleiman, Karbasi, Krause, ‘14]

Stream:

\[f \geq \frac{\text{OPT}}{2k} \]
Thresholding [Badanidiyuru, Mirzasoleiman, Karbasi, Krause, ‘14]

Stream:

\[OPT \in \{ (1 + \epsilon)^i | i \in \mathbb{N} \} \]

\[f(\vdots) \geq \frac{1}{2} \OPT \]

\[\geq \frac{\OPT}{2k} \]
Second Objective

Submodular maximization under knapsack constraint

\(f \) is submodular, monotone, and \(f(\emptyset) = 0 \)

Extract **small** representative subset out of a big dataset

\[
S^* = \arg \max_{c(S) \leq K} f(S)
\]

Solving this problem exactly is NP-hard
Thresholding in Review

❖ Key concept: marginal gain $f(e | S) = f(e \cup S) - f(S)$
❖ If marginal gain exceeds threshold, add item to S.
❖ Else, discard item.

❖ $f(\text{OPT} \cup S) \geq f(\text{OPT}), \ |\text{OPT} \cup S| \leq 2k$

❖ What about for knapsack constraints?
❖ Could have item with good marginal gain, but really large size
Knapsack Optimization

Stream:
Knapsack Optimization

- Key concept: marginal density $\rho(e \mid S) = \frac{f(e \cup S) - f(S)}{c(e)}$
- If marginal density exceeds threshold, add item to S.
- Else, discard density. Does it work?
Knapsack Optimization

- **ALG 1:**
 - If marginal density exceeds threshold, add item to S.
 - Else, discard density.

- **ALG 2:**
 - Keep “best” element

- **ALG:** Return max(ALG 1, ALG 2)
Adversarial Robust Submodular Optimization

- $V = \{e_1, e_2, \ldots, e_n\}$
- Monotone submodular function f
- $c(e_i) \geq 0$

- See all the data and make summary Z.
- Given set E that is removed from V.

- **Goal:** $S^* = \arg \max_{c(S) \leq K, S \cap E = \emptyset} f(S)$
Results

❖ Streaming algorithm for single knapsack, robust to the removal of m items.
❖ Better streaming algorithm for single knapsack, robust to the removal of size M.
❖ Streaming algorithm for multiple knapsack, robust to the removal of m items.
❖ Distributed algorithm for multiple knapsack, robust to the removal of m items.
❖ Size of our summaries are almost optimal.
Approach

Stream:

- Algorithm to produce summary S
- $Z = S \setminus E$
- Run Greedy on Z
Partitions and Buckets Data Structure [Bogunovic, Mitrovic, Scarlett, and Cevher ‘17]

Partition 0
Partition 1
Partition 2
Partition 3

\(\tau \)

\(\tau / 2 \)

\(\tau / 4 \)

\(\tau / 8 \)
Partitions and Buckets Data Structure [Bogunovic, Mitrovic, Scarlett, and Cevher ‘17]

Partition 3

Partition 2

Partition 1

Partition 0

\[\tau \]

\[\tau /2 \]

\[\tau /4 \]

\[\tau /8 \]

\[\geq ? \tau \]
Partitions and Buckets Data Structure [Bogunovic, Mitrovic, Scarlett, and Cevher ‘17]

Partition 4

Partition 3

Partition 2

Partition 1

Partition 0

\(\tau \)

\(\tau /2 \)

\(\tau /4 \)

\(\geq \tau /2 \)

\(\tau /8 \)
Partitions and Buckets Data Structure [Bogunovic, Mitrovic, Scarlett, and Cevher ‘17]

Partition 3

Partition 2

Partition 1

Partition 0

\[\tau \]

\[\tau /2 \]

\[\geq \tau /4 \]

\[\tau /4 \]

\[\tau /8 \]
Partitions and Buckets Data Structure [Bogunovic, Mitrovic, Scarlett, and Cevher ‘17]

- Items in high partitions are more valuable
- Bad approximation if they are deleted, so we need more buckets

- Items in low partitions are not as valuable
- Still have good approximation if many buckets are full

- If many items are deleted from high partitions, but buckets in low partitions are not full, must still have captured “good” items
Towards Knapsack Constraints

- Initial idea: replace marginal gain with marginal density
- Problem: big items can’t fit
- Hotfix: double the size of each bucket
Towards Knapsack Constraints

- Problem: number of buckets is based on the threshold, not size

Partition 0

Remains good approximation

Partition 0

Bad approximation!
Towards Knapsack Constraints

❖ Problem: number of buckets is based on the threshold, not size
❖ Main idea: *Dynamic* bucketing scheme

❖ Each time element is added, allocate space proportional to its size

❖ Cap total number of items
Towards Knapsack Constraints

- Items in high partitions are more valuable
- Bad approximation if they are deleted, so we need more buckets

- Items in low partitions are not as valuable unless they are large
- Large items allocate more buckets
- Still have good approximation if many buckets are full

- If many items are deleted from high partitions, but buckets in low partitions are not full, must still have captured “good” items
ARMSM: Multiple Knapsacks

- $V = \{e_1, e_2, \ldots, e_n\}$
- Monotone submodular function f
- $c_1(e_i) \geq 0, c_2(e_i) \geq 0, \ldots, c_d(e_i) \geq 0$

- See all the data and make summary Z.
- Given set E that is removed from V.

- **Goal:** $S^* = \text{arg} \max_{c_1(S) \leq b_1, \ldots, c_d(S) \leq b_d, S \cap E = \emptyset} f(S)$
Normalization

- Rescale each row i in cost matrix by b_1/b_i so that all knapsack constraints are $K := b_1$.
- Rescale all entries in cost matrix and constraint vector by minimum entry so that all costs are at least 1.
ARMSM: Multiple Knapsacks

- Recall algorithm: partitions and buckets, add item if marginal density exceeds threshold.
- What is the marginal density here?

- Marginal gain divided by the largest cost (across all knapsacks).
- Lose a factor of $\sim \frac{1}{2d}$ in the approximation guarantee.
Distributed Algorithm

- Send partition and buckets data structure and data across multiple machines
- With high probability, “bad” cases will be split across multiple machines
Results

- First constant factor approximation algorithms for submodular maximization robust to a number of removals

<table>
<thead>
<tr>
<th>Model</th>
<th>Removal</th>
<th>Approximation</th>
<th>Constraint</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streaming</td>
<td>m items</td>
<td>$O(1)$</td>
<td>Single knapsack</td>
<td>Nearly optimal summary size</td>
</tr>
<tr>
<td>Streaming</td>
<td>M space</td>
<td>$O(1)$</td>
<td>Single knapsack</td>
<td>Better guarantees, nearly optimal summary size and algorithm space</td>
</tr>
<tr>
<td>Streaming</td>
<td>m items</td>
<td>$O\left(\frac{1}{d}\right)$</td>
<td>d knapsacks</td>
<td>Nearly optimal summary size</td>
</tr>
<tr>
<td>Distributed</td>
<td>m items</td>
<td>$O\left(\frac{1}{d}\right)$</td>
<td>d knapsacks</td>
<td>2 rounds of communication</td>
</tr>
</tbody>
</table>
Empirical Evaluations

- Social network graphs from Facebook (4K vertices, 81K edges) and Twitter (88K vertices, 1.8M edges) collected by the Stanford Network Analysis Project (SNAP).
- Dominating set

- MovieLens (27K movies, 200K ratings)
- Coverage

- Baselines: Offline Greedy, “Robustified” versions of streaming algorithms
Empirical Evaluations

(a) n=20, 1 knapsack
(b) ego-Facebook, 1 knapsack
(c) ego-Twitter, 1 knapsack
(d) n=20, 2 knapsacks
(e) ego-Facebook, 2 knapsacks
(f) ego-Twitter, 2 knapsacks

Color Key:
- **Red**: AlgMult
- **Black**: MarginalRatio
- **Blue**: Multidimensional
- **Dotted Black**: Greedy
Empirical Evaluations

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>ml-20, 1 knapsack</th>
<th>fb, 1 knapsack</th>
<th>twitter, 1 knapsack</th>
<th>ml-20, 2 knapsacks</th>
<th>fb, 2 knapsacks</th>
<th>twitter, 2 knapsacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlgMult</td>
<td>641</td>
<td>378</td>
<td>401</td>
<td>1350</td>
<td>2745</td>
<td>4208</td>
</tr>
<tr>
<td>MarginalRatio</td>
<td>641</td>
<td>377</td>
<td>402</td>
<td>1350</td>
<td>2745</td>
<td>4209</td>
</tr>
<tr>
<td>Multidimensional</td>
<td>87</td>
<td>18</td>
<td>435</td>
<td>72</td>
<td>22</td>
<td>4221</td>
</tr>
<tr>
<td>Greedy</td>
<td>647</td>
<td>393</td>
<td>493</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1: Sizes of robust summaries produced by the algorithms ($K = 10$).
Related Questions?

- Non-monotone robust submodular maximization
- Other constraints
- Better approximation guarantee
- Streaming algorithms with less space
Questions?