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Goal: Given input dataset 𝑋, partition 𝑋 so that “similar” 
points are in the same cluster and “different” points are in 
different clusters

There can be at most 𝑘 different clusters

𝑘-median: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶

𝑘-means: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶
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(𝑘, 𝑧)-clustering: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶
𝑧

Goal: Find a set 𝐶 of 𝑘 centers that achieves a 1 + 𝜀 -
approximation to 

𝑘 = 3

⋅ 𝑧

⋅ 𝑧

⋅ 𝑧

⋅ 𝑧

min
𝐶: 𝐶 ≤𝑘

Cost 𝑋, 𝐶 = min
𝐶: 𝐶 ≤𝑘

Σ𝑥∈𝑋 dist 𝑥, 𝐶
𝑧

Input: Elements of an underlying data set 𝑆, which arrives 
sequentially
Output: Evaluation (or approximation) of a given function
Goal: Use space sublinear in the size 𝑚 of the input 𝑆
Sliding Window: “Only the 𝑚 most recent updates form the 
underlying data set 𝑆”
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Our Results

Theorem: There exists an algorithm that samples
𝑘

min(𝜀4,𝜀2+𝑧)
polylog

𝑛Δ

𝜀

points and with high probability, outputs a 1 + 𝜀 -approximation to 
(𝑘, 𝑧)-clustering for the Euclidean distance on Δ 𝑑 in the sliding window 
model

Theorem: There exists an algorithm that samples
𝑘

min(𝜀4,𝜀2+𝑧)
polylog

𝑛Δ

𝜀

points and with high probability, outputs a 1 + 𝜀 -coreset to (𝑘, 𝑧)-
clustering on Δ 𝑑 in the sliding window model

Theorem: There exists an algorithm that samples
𝑘

min(𝜀4,𝜀2+𝑧)
polylog

𝑛Δ

𝜀

points and with high probability, outputs a 1 + 𝜀 -online coreset to 
(𝑘, 𝑧)-clustering on Δ 𝑑

Theorem: Let 𝜀 ∈ (0,1). For sufficiently large 𝑛, 𝑑, and Δ, there exists a
𝑋 ⊂ Δ 𝑑 of 𝑛 points such that any 1 + 𝜀 -online coreset for 𝑘-means 

clustering on 𝑋 requires Ω
𝑘

𝜀2
log 𝑛 points

Note: Last theorem provides a separation from the offline setting, i.e., 
[CLSS22]

Subset 𝑋′ of representative points of 𝑋 for a specific 
clustering objective
Cost 𝑋, 𝐶 ≈ Cost(𝑋′, 𝐶) for all sets 𝐶 with 𝐶 = 𝑘
Given a set 𝑋 and an accuracy parameter ε > 0, we 
say a set 𝑋′ with weight function 𝑤 is an (1 + 𝜀)-
multiplicative coreset for a cost function Cost, if for 
all queries 𝐶 with 𝐶 ≤ 𝑘, we have

Coresets

1 − ε Cost(𝑋, 𝐶) ≤ Cost(𝑋′, 𝐶, 𝑤) ≤ 1 + ε Cost(𝑋, 𝐶)

Intuition

• Online Coreset: Data structure that not only 
approximately preserves the cost of the data 
stream, but also the costs of all prefixes of the 
data stream

• We show there exists an online coreset using the 
Meyerson sketch [Mey01] and an independent 
sampling version of known coresets, e.g.,
[CLSS22]

• Run the online coreset in reverse at each time
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