Near-Optimal k-Clustering in the Sliding

Window Model

k-Clustering

Goal: Given input dataset X, partition X so that “similar”
points are in the same cluster and “different” points are in
different clusters

There can be at most k different clusters
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Goal: Find a set C of k centers that achieves a (1 + &)-
approximation to
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Sliding Window Model

Input: Elements of an underlying data set S, which arrives
sequentially

Output: Evaluation (or approximation) of a given function
Goal: Use space sublinear in the size m of the input S
Sliding Window: “Only the m most recent updates form the
underlying data set S”
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Related Literature

Reference | Accuracy Space Setting
[BDMO03] | 200/¢) O (LW log? W) k-median, € € (0, )
[BLLM16] | C > 2 O (K*log® W) k-median and k-means
[ELVZ17] | C > 2™ k polylog(W, A) (k, z)-clustering
EMMZ22] | (14 ¢) U’TLSF—E) polylog (W, A, é)j C=>7 (k, z)-clustering
Our work (1+¢) miu(ﬁ__fﬁg 2 p{)ly]{)g% (k, z)-clustering

Table 1: Summary of (k, z)-clustering results in the sliding window model for input points in [,&]‘i
on a window of size W
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Subset X' of representative points of X for a spcfic
clustering objective

Cost(X, C) = Cost(X', C) for all sets C with |C| = k
Given a set X and an accuracy parameter € > 0, we
say a set X' with weight function wis an (1 + €)-
multiplicative coreset for a cost function Cost, if for
all queries C with |C| < k, we have

(1 —¢)Cost(X,C) < Cost(X',C,w) < (1 + ¢)Cost(X, C)
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clustering on [A]? in the sliding window model

Theorem: There exists an algorithm that samples
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(k, z)-clustering on [A]¢
Theorem: Let € € (0,1). For sufficiently large n, d, and A, there exists a
X c [A]? of n points such that any (1 + £)-online coreset for k-means

clustering on X requires () (
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Note: Last theorem provides a separation from the offline setting, i.e.,

[CLSS22]
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blocks. The coresets at level 2 for 2 > 1 are each (1 + 0 (21&”))—001'0501:5 of the coresets at their

children nodes in level 7 — 1.

* Online Coreset: Data structure that not only
approximately preserves the cost of the data
stream, but also the costs of all prefixes of the
data stream

* We show there exists an online coreset using the
Meyerson sketch [Mey01] and an independent
sampling version of known coresets, e.g.,
[CLSS22]

* Run the online coreset in reverse at each time

Empirical Evaluations
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(a) Comparisons for varying k. (b) Comparisons for varying m.

Fig. 2: Comparison of average clustering costs made by uniform sampling, histogram-based algorithm,
and our coreset-based algorithm across various settings of space allocated to the algorithm, given a
synthetic dataset. For comparison, we also include the offline k-means++ algorithm as a baseline,
though it is inefficient because it stores the entire dataset.

Fig. 1: Merge and reduce framework on a stream of length n. The coresets at level 1 are the entire
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