Adversarial Robustness of Streaming Algorithms through Importance Sampling

Model

- **Input**: Elements of an underlying data set S, which arrives sequentially and adversarially. Adversary can choose future inputs after seeing previous outputs by honest algorithm.
- **Output**: Evaluation (or approximation) of a given function
- **Goal**: Use space sublinear in the size m of the input S

Surprising separation between “classic” streaming model where the stream input is fixed but the order of the updates may be given adversarially

Hardt and Woodruff [HW13] showed that Linear sketches are NOT robust to adversarial attacks, must use $\Omega(n)$ space by giving an attack on AMS F_2 algorithm.

Applications / Motivations

- **Adversarial machine learning**: ML problems where the input is chosen by an adversary.
- **Database queries**: For multiple queries to a database, each query may depend on the responses to the previous queries.
- **Transparency of Algorithms**: Internal state of honest algorithms may be entirely revealed or otherwise compromised.

Coresets

- **Coreset**: Returns an ϵ-approximation on a query space.
- **Merge and reduce framework**: Each $C_{i,j}$ is an $\epsilon/\log n$ coreset of the corresponding partition of the substream.

Applications: k-means clustering, k-median clustering, projective clustering, principal component analysis, Bayesian logistic regression, generative adversarial networks, k-line center, M-estimators.

Row Sampling Algorithms for Linear Algebra

- **Row-arrival model**: $M_1, \ldots, M_m \in R^{d \times d}$ rows of a matrix M.
- **Sample each row based on its “importance” to obtain $(1 + \epsilon)$-approximate solutions to each problem**.

Linear Regression: Output $x \in R^d$ to minimize $\|Mx - b\|_2$.

Spectral Sparsification / Subspace Embedding: Output $A \in R^{m \times d}$ so that $\|Mx\|_2 \approx \|Ax\|_2$ for all $x \in R^d$ and $m \ll n$.

Low-Rank Approximation: Output $A \in R^{m \times d}$ so that $M - MP\|_F \approx \|A - AP\|_F$ for any rank k projection matrices P.

L_1 Subspace Embedding: Output $A \in R^{m \times d}$ so that $\|Mx\|_1 \approx \|Ax\|_1$ for all $x \in R^d$ and $m \ll n$.

Competing Algorithms: Importance sampling based algorithms are adversarially robust.

Empirical Evaluations

- **Streaming k-means clustering**: A series of point batches where all points except the last batch are randomly sampled from a two-dimensional standard normal distribution. Points in the last batch sampled but around a distant center.

- **Streaming linear regression**: All batches except the last one are sampled around a constellation of four points in the plane such that the optimal regression line is of -1 slope through the origin. The last batch is at (L, L), far from the origin so the resulting optimal regression line has slope 1 through the origin.

- **Sampling vs. sketching**: For a random unit sketching matrix S (each of its elements is sampled from $(-1, 1)$ with equal probability), we create an adversarial data stream M such that its columns are in the nullspace of S for linear regression.

Results and Related Work

- **Our result**: Importance sampling based algorithms are adversarially robust.
- **Intuition**: Importance is a robust metric and sampling based algorithms use public randomness that is independent of previous randomness.

- **Corollary**: Merge-and-reduce is adversarially robust.
- **Corollary**: Row sampling algorithms are adversarially robust.
- **Corollary**: Edge sampling algorithm is adversarially robust.

References